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FOREWORD

The research program summarized in this report was initiated 1 JunT 19b2
by AF Flight Dynamics Laboratory, Research and Technology Division, Wright-
Patterson Air Force Base, Ohio. The research effort consisted of converting
RTD's Six-Degree-of-Freedom Flight Path generalized computer program from SOS
to FORTRAN/FAp computer laan.guage and was undejtaken as a tortion of the study
conducted by McDonnell Aircraft Corporation under USAF Contract No. AF33(6>()-
8829 during the period 1 June 196? to 31 December 1963. This report, prepared
by A. E. Combs, McDonnell Aircraft Corporation, is essentially the original
formulation report (WADD m-60-781, Part I) with the additions, modifications,
and corrections made since its publication. Mr. B. R. Benson of the AF Flight
Dynamics Laboratory has been the Air Force technical representative.

This report was prepared under Project 1431, "Flight Path Analysis", Task
143103, "Six-Degree-of-Freedom Flight Path Analysis".

............... 'c--- i'-tnd b. D. ,esid,: 0L Trle
System ccornology Division for contributions to the original analytical for~iu-
lat.Lon and to the following members of the McDonnell Automation Center:
Messrs. F. W. Seubert and N. E. Usher for design and modification of the
computing program, and R. F. Vorwald for further modification, correction,
and conversion of the machine language.

For ease of reading, the documentation of this project has been prepared
in several parts. The total documentation is summarizee as follows:

Part I

Volume 1 - Basic Problem Formulation

Volume 2 - Structural Loads Formulation

Voluie 3 - Optimization Problem Formulation

Part II

Volume I User's. Manual for Part I, Volume 1

"Volume 2 - User's Manual for Part I, Volu,<. 2

I,-Volume 3 - User's. Mrnual for Part 1, Volume 3

B t A.Best Available Copy



ABSTRACT

A trajectory computation program is ( iscribed for determuin.a.ag vehicle per-

formance throughout the entire flight regime of speed and altitude in the

atmosphere and graviLy field of a noy.-ispherical rotatin6.g planet. The program

is formulated for Feven options of varying refinvn.iL from the six-degree-of-
freedom problem to the two-degree point mass problem. A reverse option for

the aerodynamic analysis of light test data, a punched card output, and a
nemi-aUtorlatic computational tie to an interplanetary trajectory computer
program are included. The program is specifically oriented for computation
on the IBM 7090/7094 digital computer using the FAP/FORTRAN2 machine language..

This teclhaical documentary report has oe;-n v,'i-ewed Lnd is approved.

J- L4d/'f.P I.,
Chief Flight Mechfuici D! , U.aoi-
AF Flight Dynamics Labor& xv"
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SYMBOLS -AND NON4EXNCIATURE - -- *- ~-

The symbols and nomenclature us~ed in the farajulatý.~io the U-~-4ere~
Freedom Flight-Patb Study computer program axe summarized in this section.
Otandard symbole, currently in u~e in the fields to which they are applied,
have been used whenever such use does not result in corfl~icts, Duli~city of5 symbols has been allowed for derivation purposes; however, all quantities-computed
by the prog,-am have unique symbols assigned. The engineering notation and the
normal units for each quantity are included with the definition. The symbols
and def'initions have been subdivided according to usage as follows:

uate gory EaMS

Aerodynamics . . . . . .. .. .. .. .. .. .. .. .xiii

Aerodynamic Heating ... . .. .. .. .. .... XX

Angular Position Data. .. ............ .................. xxii

Angular Velocities . .. .. .. .. ..... .. .. * . . Xxiv

Atmos3phere Data. .. .......... .......................... XXV

Axes Systeis .. .............. ........... . . . . . .. xxvi.

Body Physical Oa~a . . . . . . . . . . . ... . ... xxv.Lli

Direction Cosines. .. .................. ...... .... xxx

Eng~ine Data. . ............................... . ...... xxxi.

Fligty,-Plan Pro ramnmer and Autopilot. .. .............. .=41ii

Forces and Moments .. ................ .................. xxxv

GeoifhvsIcalfData .. .............. ...................... xxxvi

Linear Velocities. .. ...... ..... . . . . . . ... . . xxvii

Pcoi~tion Data. .. ............ .......................... xxxviii

Miscellaneous. .. .............. .................... xxxix

xi:



-- ~-- .. >. -..-.- _ r ..
C.P

SYMBOLS DEFINITION AND UNITS

Wind Axes Forces - Pounds

W: D Drag
°Y Side Force (also inertial or space-fixed

t • coordinate system)

• :•_ Lift (also summation of rolling moments in the
I •: body axes system)

•Body Axes Forces - Po~unds

a Axial Force

y Side Force (also body-axes coordinate system)

nF, Normal Force

Aronamic Body Axes Moments - Foot-Pounds

I Moment About the x Axis
in Mome.nt About the y Axis
n Moment About the z Axis

Coefficients - Dimensionless

Cj\ Axial Force Coefficient
Cy Side Force Coefficient (body axis)
CN Normal Force Coefficient
Cl Rollin, Moment Coefficient
Cm Pitching Moment Coefficient
Cn Yawing Moment Coefficient
CD Drag Coefficient
Cy Side Force Coefficient (wind axis)
CT. Lift Coefficient
Cf Skin Friution Coefficient
CP Pressure Coefficient

Dynamic Pressure - pounds/square foot
SRN Reynolds Number

Coefficient of Viscosity - slugs/foot-.second (also

gravitational potential constant)
CA0 Axial Force Coefficient Defined in the Plane of
C C,--- a/q*S
CN Normal Force Coefficient Defined in the Plane of

Pitching Moment Coefficient Defined in the Plane

of (XT)= m"/q*Sd2

Xiii



Wi m
C~jq magus Force Coefficient = CNf/ (P41/9%)

C" 1magnus moment Coefficienlt (Pali/2va)

CAo CA at a p = 00 - dimensionles

CA- CA/oa - per degree

SCA• - per degree 2

C'p 6CA/•P - per degree•:.-:•:CAO5

CAp 2  6CA/Z0f
2 - per degree 2

-C- OCA/O5... - per degreeCAB;:A16A-q

6C/,02 2

CA8 2OA/O•q -per degree
q 2

.-
2CAPC4 - per deree

CAoq o 2A/cU;oq - per degree

C~2 CAfJB~q - per degree
2

CAPB~q

(CA) 0 CA at 5r " - dimensionless

CN° CN at a = = 0 - dimensionl.ess

CN a;CN/6a - per degree

CNC? CN/O6 - per degree

CN OCN[ufp - per degree

CNsq •CN/f5q - per degree

CNFq CCNf65q - per degree2

cN/0I62 - per degree

CN~2 CN0Oq - per degree
-CNCfcco-. 2
uCN/O " - per degree

CNPB~q 62Ccpuq prdge

C(&CN/0(aIVa) - per radian

0C/Z (d•a/2Va)6xC.G. - per radian per foot

xiv
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CN bc/6 (A,12 per radian

CNq 2 .. per radian per foot

-. (CN)5 0  CD at 5c -0 = dimensionless

c C at a = - dimensionless
c ycy/I - per degree

•.a

- Y2 OCy - per degree 2

c Cy•/b - per degree

V 6cy/ 2 - per degree 2

CYtr OCy/Zbr - per degrue

N 2
yOc./r82 -per degree

CyaB 6 2Cy 0/b r - per degree2

Cy( ou P a 'uii4 - per degree2

5202c Yf~~r o 2C YfdPr -per dcgrecc

c. Ucy/u(ýAi2/2Va) - per radian
c 6 2C y0(f(3d/2Va)OXcG - per radian per foot

YJ•X y 2- G

c yr 0- cyid(rdo/2Va) - per radian

Cyrx ý 2 Cy/o(rdP/2Va)0xC.G. - per radian pcr foot

(Cy)6=0 Cy at bp = 8 r = 0 - dimensionless

Clo C1 at a = P = 00 - dimensionless

Cl, 6C-t1 oo• - per degree

Cld c.2 a- per degree

Cl• PCIjbP - per degree

1 0 2
Cl 2 fOC)( r - per degree

Cl6p ,CIr5p - 2er dýgz'•u

c:b 2 Z c E,6/2 - per degree

xv



-per e=

622CJX -I6b per degree
pp

Pb 1 kp per degree2

CIP DClfO(pd2/2Va) - per radian

__Cir 6C]jjo(rd2/'2V,) -per radian

Clrx 62Cl/Z)(rd2 /2Va)'OxC.G. - per radian per foot

(c)Cat 6 6 00 - dimensionless
p q r

1,0  cm at a f = 00 - dimensionless

Cmn uCm/'O(z per degree

CmQ 6Cfcm~o per degree

0 m~d~mQ~2 per degree2
22 2C~

c 6Cm/ucj per deg,,ree

Ctnbq omo~-p~.dce

cmnUl (1Cm/tc') - per degree~

c u2 C, fuc(ib 0  per de;:,ree~

Cmi,bqC c, /(YJ% 6- per deg~ree

Cmn 6c1,fa(&dl/2,-V,) -per radian

c cf/(dl2auCG - per radian per foot

ucm[,(qdj/2Va) - Per r~diull

c~~nu 6 2 C ,,/Z)(qdl//2V,)6x(,.G - per radian per foot

(cm) 0  Cm at 5p = br = 0 0 - dimensionless

Cno Cn at = 00 - dimensionless

Cn. uCn/'Qoy per degree

Cn6CIQý pe ege 2

Cnp .Cnfoa per degree

Cn.,2 f per degree~

xvi



SYMBOLS DEFINITION AND UNITS .

nSr 6Cn/65r - per degree
r0.I' CnOCn/'05r2 - per degree2 -

2Cn2 Cnn/o - per degree

2 aOpr 0 2 Cn/pr - per degree2

2C 2
Cn 5j n~aObr - per degreeSCCnr

• ~ ~ OnCn/00ý5r per degree2 -e

n, ,Cn/d ('de/•-Wfa) -- ,. radian

2 .Cn (od2/2Va)6XC.G. - per radian per foot

Cnr OCnfc(rd2/2Va) - per radian

Cnrx o 2 Cnf(L(92/2Va)UxCG - per radian per foot

(C) a = 5 = S = 00 - dimensionless

Aerothermoelastic Coefficients

P1  Firsý Order Elastic Coefficient in C' Equation
feet /pound

A2  Senopd Order Elastic Coefficient in CAp' Equation -

A3 First Order Elastic Coefficient in CM' Equaion -

Atee/puund

A4 Second Order Elastic Coefficient in CA'b Equation -

feet4/pound2  (

A5  First Order Elastic Coefficient in C'a Equation -

feet 2 /pound

A6 Second Order Elastic Coefficicnt in C, Equation
feet 4 /pound 2

A7 First Order Elastic Coefficient in CN'q Equation

feet2/pound

AB Second Order Elastic Coefficient in C1~ Equation-
feet 4/pound 2

A9 First Order Elastic Coefficient in C'. Equat ion -

feet 2 /pound

A10  Second Order Elastic Coefficient in C Equation
feet 4 /pound 2  yE

xvii



i• •"SYNB01S DEWINITION AND UNITS

-All First Order Elastic Coeffictent in-Cyot Equation -F _ 'feet2 /pound
SA12 Becopd Order Elastic Coefficient in Cyla Equation- :

feet4/pound 2

First Order Elastic Coefficient in Cl Equation-
A13  feet 2 /pound

A14 Second Order Elastic Coefficient in C Equation -

feet 4 /pound 2

A- 5  First Order Elastic Coefficient in C15p Equation -

feet 2 / oiilnd
AI6  Secopd Order Elastic Coefficient in l Equation -

feet4/pound2

-A1 First Order Elastic Coefficient in C' Equation -

feet 2 /pound

A38 Second Order Elastic Coeffici.-nt in Cm• Equation -

fcel4-pound2

A19  First Order Elastic Coefficient in Cmbq Equation -

fecet 2/powid

A ',)0 Second Order Elastic Coefficieat in Ct Equation
feet 4 /pound2

A2 1  First Order Elastic Coefficient in C.' Equation -

feet 2 /pound

A2 2  Second Order Elastic Coefflcibnt in C"_ Equation -
feet4 /pound2-P
First Order Elastic Coefficient in Cn-r Equabion -

A2 3  feet 2 /pownd

P'2_4 Second Order Flastic CoefficienL in Cn1r' Equation -

feet ./Pound2 r

El Error Multiplier for CN - dimensionless

E2 Incremental Error in CW - dimensionless

C3 Error Multiplier for CA - dimensionless

C4 Incremental Error in CA - dimensionless

£5 Error Miultiplier for Cy - dimensionless
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• 66Iucrmentl Eror i Cy dimensionless 3

. - -7 Erro Mutple fo C - leioes

66 Iucremental Error in Cy- dimensiofle@s ..

£•9 Error Multiplier for Cl - dimensionless i-

Incremental Error in Cm - dimensionless

Error Multiplier for Cm - dimensionlessJC9

Incremental Error in Cn - dimensionless

=- •12
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NNW AERODYNAMIC HEATING ,i

SYMBOLS DEFINITION AND UN4ITS

C-- Specific Heat at Ts=O - BTU/pound 9R

Cs Specific Heat of the Skin - BTU/pound OR I

.C Pressure Coefficient

D1 -D6  Constants

.D7  Wedge Angle - degrees

H Free Stream Enthalpy of Air - BTU/pound (also
angular momentum and gravitational potential
harmonic constant)

H* Reference E-utheipy - BTU/pound

Haw Adiabatic Wall Enthalpy - BTU/pound

He En'.halpy Based on Equilibrium Stagnation
Tcmpermvure - OR

Reference En'halpy of Air at 59iO°R - BTU/pound

Skin Entha.lpy - b6',L/pOUid

Tim Total Enl,balpy BT-(/pound

HT1  Adiabatic Wall Enthalpy at the Stagnation Line
of a Hemi-Cylinder Leading Edge - B'PU/pound

EnLhalpy Aft of the Shock Wave - BTU/pound

lH Characteristic Length to Skin ThilrpcraLure
PoinL - feet

MT~n Mach Number Normal to Shock Wave

MN2  Mach Number Aft of the Shock Wave

(Pr*)-2/3 Prandtl Number Based on Reference Enthalpy
(raised to the -2/3 power)

P2 S~a.ic Pr'•ssLre Aft of Shock Wave - pcunds/square
foot

rH Constants Depending upon Reynolds Number

YTI

K11

xx
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tSYMBOLS DEFINITION AND UNITS

Reynolds Number Based on Referenoe Enthalpy

RN.T TP Critical Reynolds Number

SRN2  Reynolds Number Aft of the Shock Wave (local)

? Te Equilibrium Stagnation Temperature oR

Temperature Based on Reference Ent.halpy -R

Tr Effective Temper&!-,-r-e.of Space - OR

Ts Skin Temperature - OR

T Skin Temperature Rate of Change - R/sec

Tsest Estimated Skin Temperaturc - OR

T2  Temperature Aft of the Shock Wave - OR

V2  Velocity Aft of the Shock Wave - feet/second

f Ai,-le of Attack of Skin Surface - deirces

Shock Wave Angle (also sideslip hanle) - degrees

53,,'n Thicknez -f

eeý Emissivity of the Spherical Nose

Cs Emissivity of the Skin

ESTs_0 Emi.[sivity of the Skin at Ts=0

des/dT De:rivative of Emis.ei,-ity with Respect to
Tcmperature

wx Coefficient of Viscosity B1aPPd on Reference

Enthalpy - pounds/foot-second

12 Coefficient of Viscosity Aft of the Shock Wave -
pounds/foot-second

Ps Skin Density - pounds/foot
3

p* Density Based on Reference Enthalpy - pounds/foot 3

Stefan Boltzmann Constant (11.758 x 1O-13)
BTU/second/fTot 2 /OR• (also azimuth angle)

xxd



ANGULAR~ MESTEOLD

F SY•OLS DEFINITION AND UNITS

Va. A Azimuth of Platform Xp Axis - degrees

B Equatorial Angle Between Geocentric and Inertial

Ccordinate System - degrees

BA Bank Angle - degrees

B Equatorial Angle Between Inertial and Platform
Coordinates - degrees

"a Angle of Attack - degrees

Total Angle of Attack - degrees

...- Angle of Sideslip (also shock wave angle) -

degrees

7 Elevation Flight-Path Angle - degrees

Elevation Flight-Path Angle Including Effect
of Winds - degrees

ýD Geodetic Flight-Path Angle - degrees

5 p Control Deflection to Induce a Moment About
the x Axis - degrees

8q Control Deflection to Induce a Moment About
the y Axis - degrees

Control Deflection to Induce a Moment Aboutthe z Axis - degrees

Control Surface Deflections - de.,rees

Cr Horizontal Flight-Path or Azimuth An',le (also
Stefan-Boltzmann constant) - degrees

aa Azimuth Angle Including Effect of Winds - degrees

OD Geodetic Hotizontal Flight-Path Angle - degrees

VA Aerodynamic Roll Angle - degrees

OLP Platform Geocentric Latitude - degrees

OT Angular Rotation of the Plane of Swivel of a
Thrust Vectoring Nozzle About the x Axis - degrees
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SYMBOLS DEFJ'ITJXON iijAu UNITS

AnlAe of Swivel o a Thrust Vc i=ng ozz .....

degrees .. ... _•

Euler Angles Between Body Axes and Local--Cocentric
O Horizon Coordinates. Set 1. Yaw-Pitch-Roll

Rotation Sequence - degrees

0" Set 2. Pitch-Yaw-Roll Rotation Sequence - degrees •j7

off Set 3. Pitch-Roll-Yaw Rotation Sequence -degrees

4' FEuler Angles Between Body Axes and Inertial
'0 Coordinates in Degrees

Qm Measured Euler Angles Between Body Axes and Plat-
OM form Axes System - degrees
*m

*p Euler Angles Between Body Axes and Pl'tform Axes
Op System. Set 1. Yaw-Pitch-Roll Rotation Sequence

O•p degrees

Q) Set 2. Pitch-Yaw-Roll Rotation Sequence - degrees@ t

Op

op,, Set 3. Pitch-Roll-Yaw Rotation Seqnience - degreespit

*r Angles Between Rotating Machinery Axes System
Or and Body Axes System - dcgrees
Or

Autopilot Command Values of OT and XT- de-greesOTC

xxiii



ANGULJAR VBLOCITIE-6

8YIJB .I IT.N . .. NI ..... .~ ..

p Inertial Angular Rates of Body About Its Axis
q Systemt - radians/second

qA Aeroela-tic Inertial Angular Rates of BodyrA About Its Axis System - degrees/second

Pe Planet Referenced Angular Rates of Body About
qe Its Axis System - radians/second
re

Pm Measured Inertial Angular Rates of Body About
qm Its Axis System - radians/second
rm

Wr Rotation Rate of Machinery Within the Body About
Its Axis System RPM

xxiv



K3 ATMOOMUZ DATA

f SYMBOLS DlEFINITION AM- UNITS. .1

H Geopotential Altitude - geopotential meters

1P Atmosphere Pressure - pounds/foot-

ST Temperature of the Atmosphere (also engine
thrust) - OR

TM Molecular-Scale Temperature of the Atmosphere -

0V Speed of Sound feet/second

Kine~atic Vie cosity of' the Atmosphere -

feet /seeond

p Atmosphere Density - slugz/foot 3

)Ov
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-DWINlITION AN~D UNITS

x Body Axes Coordinate Syst~em or Displ~acements From a'501F- y Specified Origin in that System (y also aerodynamic
Z aide force, body axes) - feet

I ~X Inertial or Spage Fixed Coordinate System or Dia-Y ~~~~placements from a Specific Origin in ta yt~
Z (Y also aerodynamic side force, wind axis) - feet

XA Wind Coordinate System or Displacements from a
1A Specified Origin in that System - feet
ZA

Xe Earth Reference Coordinate System or Displacements6
Ye from a Specified Origin in that Systemn - feet

Zg

Xg Local -Geodentic--Horizon Codntsor Displacemet
Yff entsfrom a Specified O ri1gin in that .System - feet

Z 0

PoclateormicHri CoordinatesSse or Displacements fo
Y01 rowa Specified Origin in that~ System - feet

zip
XP RotatingrmaChorinaeryAi System or Displacemuents fo

fro a Specified Origin in that System - feet

Zr
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AXES SYSL'TEMS

INTERPL~ANETARY TRJC-R Z ýW _T3~-I1N

SYMBOLS DEFINITION AND UNITS

Right Ascension of Planet North Pole -'degrees

ST Planetocentric Equatorial Coordinates Based Upon
SA the Earth's Equatorial Plane and the Mean Vernal
p Equinox of Reference Date in Ephemeris Time or

Displacement from a Specified Origin in that
System - feet

b Declination of Planet North Pole - degrees

Hour Angle of the Vernal Equinox. Referenced
with the Intersection of the Planet Equatorial
Plane and the Earth Equatorial Plane of Reference
Date - radians

kN Hour Angle of Launch-Site Meridian with a Plane
Purpendicular to the Intersection of the Planet
Equatorial Plane and the Earth Equatorial Plane
of Reference Date - hours

11N Hour Angle of the Vernal Equinox of Reference
DatLe with Respect to the Launch Point at tne Time
of Launch - hours

tTf Sidereal Time - hours

HA Hour Angle of Planet's Prime Meridian Measured
from the Meridian Passing Through the Vernal
Equinox of the Reference Date - degrees

xxvii
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1 3 ~BODY TYHY82AI -DATAI

SYNBLSDEIIINANUIT

b Wing Span - feet

C.G. Center of Gravity

-d 1 Reference Length - Longitudinal Plane -feet

d2  Refawe~nwe Length - Lateral Plane -feet

E Modulus of Elasticity -pounds/inch
2

Ix. Moments of Inertia of Rotating Machinery Within
I. the Body About Machinery-Axes System - slugfs-feet 2

'zr

IxxMoments of Inertia About the Body Axes-
I yy slugs-feet2

- Izz

IxyProducts~ of Inertia About the Body Axes-
s3.ugs -feet2

Iyz

11 ~Characteristic Distances for Jet.-D~aning
Momients - feet

in

ly Characteristic Distance u for Jet -Damping
1.. Forces - feet

-~ Mass of the Body -slugs

Fuel Mass Consumed - slugs

r~iRadius of Hemispherical. Nose (stagnation region)-
feet

S Reference Area - feet2

WT ';/eight of the Body - Equal to Mass Time~s Reference
r,- pounds

xC.G Position Coordinates of the C.G. in Body Coordin-
Y.G. D tes - feat

C -x 0C G - feet
4"C~.. x z r4 . I .ref)

xxrviii



Iflcremeivb&3. Error in Vehicle Mass.- slugs

(.;18 ncrementalJ Error in C.G. Location - feet

eig Incremental. Error in I - slugs-feet2

E20Incremental Error ini I slugs-feet2

2Incremental Error in I slugs-feet

2
E22Incremental Error in I slugs-feet

E3 Incremental Error in I - slugs-feet2

2
E24F Incre~mental Error in Iz- slugs-feet

xxix



SYMIOLS DEYINITION AND UNITS3
Matrix of Direction Cosines * Used to Transfer

b~b~b 3 Quantities from Inertial Axes System to Platform
c~c~c 3 Axes System

d~d~d 3 Matrix of Direction Cosines. Used to Transfer

eje~e 3 Quantities from Local-Geocentric Horizon Coor-
dinate System to tody-Axes System Using Local

f~i~f 3 Body Euler Angles and to Transfer Quantities

from the Body Coordinate System to Platform Axes

System Using Platform Euler Angles

ili 2 i 3  Matrix of Direction Cosines. Used to Transfer
-JliJ2 3  Quantities from Geocentric Horizon Coordinate

k~k~k 3 System to Inertial Coordinate 1.yotem

i~iioi, j, ki, Direction Cosines with W,=0
k10ki20k30

Matrix of Direction Cosines. Used to Transfer

"Ui L211 3

010203Matrix of Direction Cosines. Used Lo Tranofee
010203 Quantibies from Wind Coordinates to the XLI Ye'

lqPIPPP 3  Ze Systemi

ulu~u3  Matrix of DireeLion Cosines. Used to Transfer
vlvpv3  quantities from Body Coordinates to Wind Coor-
wjw2w 3  dinates

mx



SYMBOIL DEFINITION AND UNITS

Ae Engine Exit Area - square feet

LT Engine Thrust Moments in the Body-Axes System
SMT foot/pounds

NT
N Throttle Setting (also momont -in body-axes sysLem)

T Engine Thrust (also tefbperature) - pounds

TVAC Vacuum Engine Thrust (rocket motor) - pounds

STXA Engine Thrust Forces in the Wind-Axes System
TyA pounds
TZA

TXe Engine Thrust Forces in the Earth Reference Axes
Tye System - pounds

Tx ElrgirI UIuubL in l ou y ot -

xN Engine-Nozzle Swivel Point from Reference Center
YN of Gravity - feet
ZN

E13 Error Multiplier for Thrust Force - dimensionLess

El4  Incremental Error in Thrust Force - pounds

xxxi



I- ~ ~ ~ FIGH~T-PLAN MROA&MatflP-

AX Indication of Platform Accelerometer feet/second2

pA

ME ax Body Axes Cqmponents of Inertial Acceleration -

ay feet/second,.

B1 .B3 0- Bias Values Used in Autopilot Equations

-CAc Axial-Force Coefficient Command
-Cy€ Side-Force Coefficient Command
SCNc Normal-Force Coefficient Command

CT) Drag-Force Coefficient Command

Cyr Side-Force Coefficient Command
CLc Lift Coefficient Command

Cq* Gain Coefficients
C.
cp

S~CY

E1-Eo25 Auxiliary Variables Used for Solution of Autopilot
Differential Equations

KA-KZ Autopilot Gains (see defining equations)

LJ-L 2 5  Limiter Values (s e defi ning q ,.n+.i- ns)

na Body Axes Load Factors - g's
n*
n(

body Axes Load Factors Commnnds - g's

nbc

n. Wind Axes Load Factors - g's
ncr

n 7

nvc Wind Axes Load Factors Commands g's

nrc

xcdi



Zl2~~ .a • .." .• t ..- a r e ~ • ... ... .. ....... ....
KjlYaw lYrol 0a -A eea

K12  yaw Gyra-viiRh .eress~an
K 1  Roll Gyro Bias -degreets

K14 Roll Gyro Drift Rate - degrees/second

K20 er degrees

SKI ErrTolerance for A or Pih t erom-adere
K.6 T:oleraPce for assu-iBa0n zero - degrees
•, K27 Error in Initial Yaw Alignment - degrees

_•.K18 One-Half Yaw Dead-Band Width - degrees 1_4•
•LK19 Error in Initial Roll Alignment - degrees
•:!K20 One-Half Roll Dead-Band Width - degrees

K21 Error Multiplier for Pitch torque command A -

dimensionless•:K22 Pitch Gyro Bias - degrees

RNTP MomeOne-Half Pitch Dead-Band Width - degrees
AmK24 Error in Initial Pitch Alighment - degrees

KR MomenPitch Gyro Drift Rate o Thrustsand/o

AKmeti2erdnmisi deRee eoll-fotpud

•_ K26 Error Multiplier for Trim Angle of Attack -,

dimensionless

RNTP Moment Due to Misalignment of Thrust and/or
Asymmetric Aerodynamics in Pitch - foot-pounds

RNTR Moment Due to Misalig-nmont of Thrust and/or
Asymmetric Aerodynamics in Roll - foot-pounds

RNTY Moment Due -to Misalignment of Thrust and/or
Asymmetric Aerodynamics in Yaw - foot-pounds

Time to Coinmence •iide Ph-se - seconew

Pc Roll Rate Command - degrees/second

P2Tc Hr ile iomfmnd - polnds/foot 2

qc* Dynm'•i-ic Prassure Command powuds/foot 2

0X Angle of Attack Command - degrees

3c Angle of Sideslip Command - degrees

"•c Rate Command - degrecs/second

7C Attitude Commands - degrees
ac
Qc

PC Density Command - slugs/foot
3

Density Command Corrected for Planet Rotation -

Pel slugs/foot 3

Qc' Pitch-Attitude Command - degrees
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r- -- .... .. . . . . .. -.. . .. .....-.... .-.- -

I ~~~~Yaw-Attlitude Command -deades3~- .. - . ~'

Damping Ratios - dimensionle~s
OLC Longitude Command - degrees

ZLm ,Latitutde Command - degrees

T "Temperature Limiting Attitude Error Signals - degrees

•A-TZ Time Constant - seconds

2' 30
.•I.•30 Natural Frequency - radians/second

xxxiv



SYMRO78 DEFINITION AND UNITS

F Force - pounds

Fx Summation of Forces in the Body-Axes System
yIncluding the Body Component of Weight - pouds

lzF
SXe eSummation of "'..ces in Earth Reference Axes

1'Ye System Including the Body Component of Weight
-Z pounds

•FxD Jet Damping Forces - pounds
i :; FYD1;

FZD

H ( Angular Momentum (also gravitational potential

harmonic constant and enthalpy) - foot-pound-
seconds

L ( Summation of Moments in the Body Axes System (L
M also lift and N also throttle setting) -

N foot -pounds

LD • Jet Damping Momenii,s - root-poundaý

MD
ND

'A Summation of Forces in the Wind Axes System -

Fyp, pounds
FZ'A

Fx( Generalized Force Input - pounds
4Fy
AFz

ALT ( Generalized Moment Input - foot-pounds
&MTb•NT

xxxv



sYMflOLS D~~~OIAND UNIITS

'1 ref Reference Gravitational Acceleration (32.:174

gyfeet/second 2 ) Use toDfneWih

gx 4' ~Components of Gravity in Inetia-Axes System-
feet/second2

9X~ Components of' Gravity in Ieartha-Rxeseec Syxem

~~zg Coorditucnats- etseod

k0 -k Components in theEquation Earth-R eodretic Axes

ex C~~~Gocpoentri LfGatitude Gopnrc oio

SG~~CordinitetinlPoeta - feet/secondd

p Gravitational Potential aroi Constant s (as (cefiin

in samendirnectos spantErh

ko -1{ Components of the Plne'sRoation R altnedtic indth
LalGeocentric Coortdinteytm-raini~cu

Re2  Erraor MiplRaiuserefereAeosphericonity - nonet

U Grav~~~imensional Ptnilfe2/eod

£26~~ ~o Aditcoive ) Ero for tmospercnDeniy-slg/ot

w p Planet RotatxxxionRt ain/ea(oiiei

in sme drecton a plaet Erth



> 1 ~SYbsoL DEMNITION' AND UNITS -

YIN Mach Number

SuI I Inertial Velocity Components in Body Coordinates -

2 feet/second

Ur•n uMeasured Inertial Velocity Components in Body
: vm j Coordinates - feet/secona

wm

SUw Inertial Wind Velocity Components in Body
VW Coordinates - feet/seeond

S-V Inertial Speed - feet/second

Va Airspeed - feet/second

VD Velocity Increment Duie to Drag - feet/second

Vgrav Velocity IncremeaL Due to Gravity = feet/second

Vg Ground Rpferenced Speed - feet/second

V..' Check Value of Ground Referenced Velocity Vg -

fee.t/oe ond

VP Velocity Increment Due to Rocket No-zle Back
Pressure - feet/second

Vtheo Theoretical Velocity Increment Due to TVAC -

feet/second

Vw Wind Speed - feet/second

X*w Wind Velocity Components in Local-Geocentric-
)wHorizon Coordinates - feet/second (Xgw positive

Z when blowing north, Ygw positive when blowing
gil east, Zgw pobitive when blowing downward)

iw Wind Velocity Components in Inertial Coordinates -

YwI feet/second

xxxvii



POSITIOIN DATA

SYMBOLS zxvo MWF

h Geodetic Altitude - feet

h' Geocentric Altitude - feet

R Distance from Center of Planet to Body feet

R__ Total Distance Traveled Over Planet Surface-
RD nautical miles

H9 Approximate Range of Vehicle from Launch Point
g Over Great Cirelc Path - nautical miles

ROL Local PlaneL Radiljs -feet

t Time - seconds

ts Stage Time - seconds

QL Longitude - dcgrees

Geodetic Latitude - degrees

Geocentric Latitudc - dergrees

Ka Constant Used in Equatorial Flight to Specify the
Direction of Launch (K0  1 for easterly launch;
Ka -1 for weste~oy launch) - dimenai~onless

RDO Initial Total Distance Traveled Over I'lanet
Surface - nautical miles

ROL, Initial Local Planet Radius - fee'L

QL0 In:Csial Longitude - degrees

060 Initial Geodetic Latitude - degrees

O~o Init ial. Geocentric Latitude - degrees

Initial H~eadtng - degrees

XD Downrange along Initial Great Circle -nautical

Crossrange from Initial Great Circle -nautical

miles
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S... ... - ...... ... .~~~~... ................. . . ++ ....... ...... -. .... ... .- :,- :..

S.XI.OLS DEFIN..ITION AND UNITS .

jXLy, lZ Unit Vector - subscript indicates the axes system
.Q c Subscript c Denotes an Autopilot or F -ight-Plan

-. Programmer Command Signal

ref Subscript ref Indicates Value is a Reference
Quantity

A Bar Over a Symbol Denotes a Vector

A Dot Over a Symbol Denotes Time Derivative

Two Dots Over a Symbol Denotes the Second Deriva-
tive with Respect to Time

0 Subscript o Denotes - initial, time zero, origin
of axes system, sea level conditions

R Ratdius Vectors

p

SL Subscript Indicates Sea Level Reference Value

ei Refers to an Error Constant, Either Multiplier
i 1,2...n or Additive (subscript number defines which one)

r Subscript r Denotes Rotating Machinery

p Subscript p Denotes Platform

v Subscript v Denotes Vertical Axes System

xxxix



In the current wide-spread use of high speed digital computing ma..ines for
solving flight path and vehicle motion problems, it is common praetice to develop
a number of specialized computer programs each applicable to a -sleaifb -:preblem.
It is usually found desirable, in formulating t hese programs, to Q•mt many of the
terms of a more general formulation which are considered- to be -of secondary effect
to the particular investigation at hand. Thin limits the rang& of application, of
these programs and. results in considerable duplication of programming for each
new specialized performance analysis. The object of the present study is: (I)
the formulction of the generalized equations of motion with six degree of freedom
for the flight-path study of any type of vehicle operating in the atmosphere and
gravity field of a rotating non-spherical planet, and (2) the design of the digital
computer program necessary to solve these equations. A feature of this computer
program is the facility by which restricted problems of less than maximum
-orhistication may also be treated.

The general specificatiom-which were followed in the development of the
required. Six-Degree-of-Freedom Flight-Path Study computer program are outlined
below:

i. Geophysical Characteristics

Rotating non-spherical earth accoumting for oblateness effect on alti-
tudc ao well ao gr•'ity.

Atmospheric properties consistent with latest information with flexi-
bility to permit use of other atmospheres or atmospheric variations.

Wind effects.

2. Vehicle Characteristics

Options to permit various degrees of sophistication in tierodynamic data
input or output applicable to boost; interim, or re-entry configurations.
Aerodynamic data input as function of miltiple variables, such as speed,
altitude, and vehicle attitude to be provided. Other options to be of
various degrees of refinement.

No restrictions Lu small angles of motion or attitude in any degree.

Vehicle spin effects, including Magnus effects, to be included for n rpm.

Account for thrust misalignment and transient effects due to stage
separation for n stages.
Include damping derivatives and cross coupling between the various degrees

of freedom.

Include provisions for simulation of vehicle autopilot.

Manuscript originally released by authors October 1960 for publicution as WADD
Technical Report 60-781. Revised and released by authors February 1964 for
publication as an IUD Technical Documentary Report.
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include provisions for simulation of flight, programmer.

Vehicle control to be po ssible by aerodynmimain eninand/i .
vernier thrust vector, retrorocket, and reaction type control.

3. Characteristics of Digital Computer Program

• Program to give time history of motion of all six degrees of freedom.

Program utilization of various degrees of complexity from two degrees
to six degrees of freedom of motion.-

Velocity input and output option relative to the surface of a rotating .
central body or absolute with respect to axis system.

Provide for performance readout in latitude and longitude according to
standard nomenclature, and all pertinent values required in the solu-
tion of operational type as well as design problems, e.g., range in
both maneuvering and straight-out cases, and energy management
parameters.

Coordinate system transformation capability.

Trajectory control during operation by linmting any or all three dcgrccs
of rotation, and/or any or all three degrees of translation.

Provision for tyiisg into an aerodynamic heating computpr program and
an interplanetary trajectory computer program, and provision for
handling heating limits.

)i. Program Operating Modes

The program should contain a reversible option whereby known trajectory
motion becomes the input and aerodynamic data is obtained as a result,
as is accomplished in flight test.

The computer program which will handle this degree of problem complexity
must, of necessity, be designed on a "unit construction!' basis such that the
individual building blocks may be readily isolated. In addition, to insure
that the program will not become obsolete as requirements develop for the simula-
tion of new vehicle concepts, the basic program must be easily revised. Recognizing
that every flight dynamics computer program has certain essential parts which are
the same regardless of the characteristics of the specific vehicle involved, the
concept of a central program area with interchangeable subprograms has been
adopted.

This report presents the analytical and theoretical developments leading
to the problem formulation and the computer program design. In the derivations and
explanations presented, any simplifying assumptions or approximations which are
made are incorporated only after the development of the more general expressions.
In this way the degree of approximation involved is made clear, and the form of
the terms, deleted are specified should they be required at a later time for
specific analyses.
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2. M~IVATION OF EQUATIONS OF-MOTION..............

This section presents the derivation of the equations of motion, of a
Wk. body in "inertial" space, as required for use in the Six-Degree-of-Freedom

Flight-Path Study computer program. One of the features of this program is
that problems which require motion analysis in less than six degrees of
freedom may also be considered without, the penalty of substantial amounts of
null arithmetic. Consequently, alternate sets of equations are developed
from the original relations by deletion of terms which are not required. The
equations of motion will form a portion of the computation loop which is
unaffected by the libraries of interchangeable subprograms describing alter-
nate control systems; airframe aerodynamics, atmospheres, and geophysical
parameters, or the data-monitoring subprograms to be incorporated. The
several coordinate transformations and velocity and angle resolutions, which
complete this central portion of the problem, are described in Section 3 of
this report.

2.1 Six-Degree-of-Freedom Analyses. - Since the equations involving the
moments of inertia, aerodynamic forces, and thrust forces are greatly
simplified if •xpressed in body coordinates, this system of body reference
will be used. II) The two basic equations which define the motion of a
body are:

-=d d
F= k V) (2.1) M () (2.2)

Nue!ý.Lcal analy.-er, of thce vector Y
equations require their resolution
into vector components ana definitiou
of the scalar coefficients. Thece
manipulations are discussed in P(xyz)
detail in many texts in mechanics
(e.g., Rcfercnccs (i) through (8)).
The essential steps of the deriva- /
tion are reviewed here, however, I_ X
for completeness. - p

To determine the displacement . z

accelerations, consider a point P ___,___,X

displaced from the origin or coor- XX
dinate system x-y-z such that the
vector r designates the point. Z
Figure 2.1 illustrates the system.

Figure 2.1 Generalized Inertial and Body-
Axes Coordinate Systems

(1) An exception is made for the three-degree-of-freedom point-mass
problem, discussed later, where it is found more convenient tc; use a wind-axis
reference system.
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Lqt the Qrigin of the coordinate system x-y-z be displaaed-f-romthe 'origi-n-of -a
apace-fixed coordinate sys4em X-X-Z by an amount and eirectl6n U v-e- ....1 3 Further, Let the coordinate system x-y-z rotate il the X-Y"Z spaee' -Suh that the
vector, W, defines the rotation.

Then

r .x 4. + + Z-

7=R l x+ YyL + Zi (2.3)

W = w + Wy+w
x x yly + 71

The coord'inate system x-y-z will be recognized as the body axes and the coordinate
system X-Y-Z are the non-moving "inertial" or Newtonian axes. The total velocity
of the point P is given by

p = R + r = XX + Yly + Zly + (x - z + y x

+ (y + xwz - ZW.x)fy + (z - xwy + Y•)iz (2.4)

It is more convenient to express the vulocity of the body-axes origin in body-
velocity components than in velocity components coincident with the "Inertiul"
reference coordinates. The vector R can be written in any coordinate system, so

= V = Xl- + '+ 1 Z Xoix + YOiY +

and liquntion (2.)1) may be rewritten as

p V + r - + Yo¾ + zUlZ + (XP .- •p'Z + Z'p) x

+ (YP + XpWz - 4p('x)71 + (Zp - xy + ypbu)iz (2.5)

where the subscripts o and p havc been added to distinguish between the velocity
components of the origin and the relative movement of the point P with respect to
the origin of the x-y-z coordinate system respectively. Differentiating Equation
(2.5) gives the relation for the total acceleration to be

p = - y(o~o + zowy) 1" + [Yo + Xobpz - oX] 2 y 0 XWy +Y'~]'

2 2
+ [Xp - 2•y w + 2zp•w - Xp (Wz + 4y) + Yp(W)60y - Wz) + Z.(Wy 4~)eoZ)] _x

pZ p y (wp z,.,(w w,,
'V'" + 2xj. - 2zy,.. - _ (L02 + ,,) + z_( -.W ) + X(, + Wj.,,) ,,
[L'p 2xpw + 2y0-• z (W2 + W') + xp(w'zO - LOy) + y_(Lx + Opz)]. z
p p y pX y xpzx

(2.6)

This acceleration relation is completely general and applies to any point on the
body. In developing the equations of motion, the point of interest, P(x,y, z),
is the center of gravity. if the center of gravity is assumed to move, relative
to the body, along the -- axis only, the following simplification can be made.



• W! .Yp-' p 0 •• ":• y p, '• p o - i :: •: ' ::- :

The, components Xo, Yo, "o, and ,,•, W, ,,,, are more-commonly known as u, v. v
and p, q, r respectively. The components u, v, and w are the velocities of the
reference point on the body. Making the above substitutions gives

Fx w"t - vr + wq + xp - xp(r 2 + q2)]

• (2.7)
Fy [~v + ur wp +?xpr + x(r +pq)]

Fz= "4w - uq + vp - 24~q + Xp(r•P - q)]

In view of the fact that most vehicles are designed to have small center-of-
gravity travel, the acceleration and velocity of the center of gravity are both
very maiil quantities and may bc oidttcd from the problem formulation. If the
reference point is further restricted to be the center of gravity, then xp auid
its derivatives may be omitted from the equations and the components u, v, and w
are the velocitics of the center of gravity. In matrix formn the equations reduce
to the following:

[F y m[ + . wi -P V

it may bu noted bore that in the analy!yig of flight-test data, where the output
of accelerometers, mounted away from the center of gravity, are used to record
the motion of the body, the complete form of Equation (2.7) must be used. It
wili also be ioted that, UlLh.ugh Equation (2.1) states Newton's Law as the
time derivative uf th, momentim, a formal differentiation of'rV, assuming )•r
to be a Ifnction of time, has not been performed in the derivation of Equation
(2.6). Such a formal differentiation gives

I' dV + d~y, V
dt it

This differentiation leads to erroneous results, however, since the residual
momentum of the expelled gases has not been accounted for by this procedure (See
Reference 8, page 111). The equation should be

!L ~V + dwt c
cit dt

5



when the residual, momentum of the expelled -masB_ ia.3mo e y_-.C is the velocitr of the expelled mas •with respect to the eonti±nghod•- -
ME contribution . c is the momentum-change portion of the thrust and--is i•nclud-e6 ItI

the summation of external forces. .

There are additional accelerations produced which are unique to configura-
IF tions which have very large fuel-flow rates and which have the thrust nozzle

located a considerable distance from the center oX gravity. These accelerations,
linear and angular, are the so-called jet-damping contributions. The term is a
correction to accelerations computed on the basis of only the externally applied
forces (or moments) and accounts for the moment of momentum which is imparted to
the fuel by the pitching velocity of the body. Thederivation of this contribu-
tion is considered in greater detail in Appendix One to this report. The
principal contribution to the equations for linear acceleration are in the y-and
z-direction and have been added to the expressions of (2.8) to give the following
result.

0x u 0° -r q] 10
Fy = + r 0 -p v + -C..: (2.9)

F -q p 0 V +2 ? ql I

The relations expressing the rotationa.L motion are obtained in a utraightfoiward
ifteoner. The componcnts. considered in this na~lysiis come from three basic aources;
the time rate of change of the moment of momentum, the gyroscopic moments which
arise from the rotating machinery of the vehicle, and the externally applied
moments. Thie moment of momentum of a body (or angular m.mentum) about _t- center
of gravity, in terms of its components, is diven by

Hx Ixx -Ixy -I

xz I x

Hy -Ixy Iyy -ITZ y

EH z-Ixz -Iyz .zz W z

or, sinceux, wy, and z are p, q, and r, respectively:

-xyq - xz + 'x L-Ixyp + I yq - IrII yzr

+ [-Ixzp - tyzq + Izzrj 1y (2.10)

The required differentiation of the moment of momentum gives

*The time rate of change of inertia noted here refers to that change occurring
at constant mass only.

6



r• : _______-- __- _____ ... .... •.. ... ........ . a . ....... ..• .- V w ~ s ~ i. . -... n.......a

S+•+ !XY• + (I • -Iyy) pr - t•.r2 p) IX I(r + pq) ,

(I + q•.. + izzr + (Ix - T-)q pr lxz(pr - 2). . + pr) ..

'ay

It is the general practice at this point in the derivation of the equations of

motion to assume that the refereonce axes of the aircraft are principal axes sad

thatthemomntsof ierta d no var wih tme. Thes body.e Tie assumellste
the roduts f inrti a~dthe imederiatibody.th Soetagn and dro pping o

ina~~ia, repciey However, it is eieyo aeamregnrlaplcblt

+solutin t nopeouand across thems w s ce rntainited.

Ith isnthegeneraltpratice dlat ve tipoinfi the derivti on impie thet eqati.omns of
motion tohassm thaenh refovefrente axes ofin oth aicrf are bodyncThil assuesad
that. the momens ofveinertiardoantervahy wiha e ime. This onvenaientl enliropinate
the prduscrteass ofinrtiom the time idtrivaties dsofbnls the momens and inerutia o

thanerthis for the codm.uther progrationg develnop•ed acros these temdillconrtainuted.

Therefore, the integration of the equations of motion will be interrupted when mass
is dropped and automatically re-established immediately thereafter (See Section
4.4 - Stages and Staging).

The jet damping contribution to the expressions for angular acceleration
(from Appendix One) is

-MuD A 1 i 12 r In (2.2)

The expression for the total angular acceleration due to the time rate of change
of the moment of momentum, including jet damping, is conveniently given in matrix
form as shown on the following page:



. -i0

Scz -1 q 1x Iy -x

=+ r 0 -P + 1yy -1 q

S-q -I~xz -yz Izz r(.3

The torques due to prutession and changes in rotational speed of rotating machinery
"aboard a vehicle which is free to gyrate in space can contribute significantly to
the angular accelerations which the vehicle experiencesy Appendix Two of this
reporL derives the Lurqutcs generated by- the precesscion of rotating machinery in

general terms and simplifies these relations as required for the solution of the
following problems.

2(a) The motion of an aircraft powered by an engine wirth a rotating mass
which is fixed in its orientation with respect to the reference axis of the
aircruft.

(b) Thc motion of an aircraft powered by a rotating-mass engine which can
'ue rot ...... d in a plane parallel to -the pI ann of symmetry ( e. g., a conver tiplane

whA.Inh is in the transition from vertical flight to forward motion or vice versa).

(c) The motitn of a satellite in which motors arc being operated (by the
proper selection of' reference axes).

The gyroscopic moments due to the rotational rates p, a, and r and the angular
momentua uf the rotating machinery are uppruximated as roilows:

LLr = -Ixr 1Or(q + Or) Bil Or

AMr = Ixr •r(p sin (r + r Cos or) (2.ih)

A~r = -xr N~ + O) tor CuS O
The complete rotational equations of motion are, therefore, from Equations

(2.11), (2..2), and. (2.13'

14=Llx + MI.Y + I

in which

L= Ixxp + Ixxp + (Izz - Iyy)qr -yz (qI r)

IX?(r + pq) - lxy(q pr) - Ixzr - Ixyq

S7 (+9) sin



SM I q+ ~+ (IX -izz)Pr - Iz(r2 - 2

-I xYp + qr) -p r~( q

2 qt 2 +Ijxrwr(p sin 9~ + r cos 9r)

Z z yyx xy

I~z P qr) - ~ q + pr) -Ip - ,q

r-1 2~l 1 I(q + ~wes~
U x )wesO

These relations, written in matrix form, are:

L I .'
LX xy 'xz P ~ 1 xy 'xzP

MN -Ir Y -I r -i y-' Il -Z qn1 ~

o ~ ~ Y -xqy'y 'xl P x~'(+~

+ 1' -j-I)~, Ty *~1y q + xr r ( ) sin o r ~ ) (.5

-'X "I Lz rz v'r ((3 + Or) c05 O

constitute the genere-. six-degree-of-I'reedom equations
n the compater programn. The Proe'aral ills Lructions

'ertain combinations of terms as follows:

"vor the c-ase where the body is inertially

YZwhich are zero when Lhu x-z

of change of inertia, products of
inertia,

(d) The rotating machinery.

/ N Thje a. forces and moments.

2.2 Three-Degree-of-li: ongitudinal Analys~es - Three-degree-of-freedom
analyses may be used, for longi',;ý... al dynamic stability investigationc and for
simplified performance work where the lateral motion is zero. For the assumed
motion the following constraints exist:

Fy =Q L=O0 N =O v =O p ý r =O

9



,_The reatrictlow. require the motion to be in the equatorial plane •when .thae motion.
is over a spherical planet. Theequations of moti-m;-(9.9),.

Fx (m + wq)

Fz = (w - uq) + 2 . .ql. (2.16)

_• M IY- yq + Iyyq 2tqlm-

These equations do not depend on motion in planes other than in the x-z plane end
S-. therefore require no additional constraints, except that gyroscopic ifiowents must

be assumed to be zero since such moments are not coulpatible with the assumption
of the reduced degrees of freedom.

7-•

2.3 Three-Degree-of-Freedom Lateral Analyses - A three-degree-of-freedom
problem option is included for analyses of lateral stability problems and preliminary
development of the lateral guidance computer loops. In this problem the motion will
be computed within the bounds of the following assumptions:

Fy 0 Fz = 0 M = 0

The general equations of motion, (2.9) and (2.15), reduce to

Fy = (+ ru -wp) - ? 2L rly

L = Ixxp + ixxp - Ixzr + Iyzr2 + IXypr

-- xzr - p l1  (2. ly)

N = JZ- + fzzr 2 -Ly.pr - IxzP

IxzP - .lrin

This set of equauions is not independent of Lhe motion in the x-y plane due to the
velocities u and w appearing in the Fy equation. Hence, it will be necessary to
apply an additional constraint that u and w are specified functions of time. Gyro-
scopic moments must also be omitted from this problem.

2.i4 Three-Degree-of-Freedom Trajectory Analyses - A three-degree-of-freedom
point-mass problew option ib itluide" to permit perforianuce analysis and trajecLury
computations of aircraft in three-dimensional space.. Since the angular rotation
relaLions are omitted in this option, 6omu difficulty is experienced in obtaining
the body rates p, q, and r required in Equation (2.9). This difficulty is eliminated,
however, if the body axes formulation is abandoned in favor of a planetocentric axis
system oriented with the Xe - Ye axes in the equatorial plane and the Ze-axis through
the South Pole. This coordinrat system is selected because of the simplification it
affords the six-degree-of-freedom problem for the flat-earth option. The Xe-Ye-Ze
axis system rotates with the earth, and the Xe-axis designates the longitude of the
body at the instant of starting the problem. With this coordinate system, the
equations of motion can be obtained directly using Coriolis' Law which states:

= •', (•r + am + 2UpkxV) (2.18)

10



whr is-the--aooelteration R-'""iee.- ý1 have #t n
and. am is the apeel-pratiofl a paxrticle woula have du.e to the pA-inetl's ra.A.1Jn
S2cxV is the Coriolis aceeleration, where -V is the velocity with respecatvto-th.

_planet (i. e., with respect to the rotating coordinate system) and Zop is the."---FA
planet's (coordinate mystem) rotational velocity. It should be AQted, h.weer".
that because of the manner in which the coordinate system has been established

S -(+Ze is through the South Pole), the vector W must have a minus sign associated
with it in the derivation which follows. Expanding this equation in the Cartesian
coordinate system selected, the equations of motion are:

Sm- (Xe - Xe +2 Ye

FU(= ?n (Ye -Y 2Xe" P) (2. 19)

-~ =-? (ie)

Force components in the wind axes are required for use with this coordinate
system. The force contributions due to jet damping are omitted in this motion
since the rates p, q, and r are undefined.

2.5 Two-Deree-of-Freedom Trajectory Analyses - For a two-degree-of-freedom
trajectory analysis, the side-force is zero. This constraint is simply imposed by
eliminating the FZe equation in (2.19). This requires the trajectory to be in the
equatorial plane. The equations of motion are:

-Xe 2 + 2
Fv =•( (e " Yelp 2 )

2.6 Flat-Planet Analyses - In certain unstr_, the euntributions of a planet's
rotational velocity and the centrifugal effects of the body's :-otion about the
planet are truly negligible and only complicate and. lengthen the computation
(e.g., the dynamic behavior of a missile during the launch phase, or talte-off and
landing phases of aircraft flight). An additional set of reduced-degree-of-freedom
options can be obtained by eliminating the planet's rotational rate and revising
the coordinate transformations rer,,ired to record the motion. The equations of
motion are unaffected by this option, however, and a further discussion of flat-
planet analyses ic more appropriately confined to -the descriptions of the coordinate
transformatiuns (See Section 3.1).

U[



~~ 3. ~~~COOYRDINATM SYST&M. AnD ~OQRDIUN~W~Q~)~

this section, presents a. deaor-iptioa of' -4.
for the Pix-Degree-of-Freedom Zllght-Path S8tudy computer preiriawm zhe-=Ofdlatu
trans formations required to relarte the Various paramueters -of thec6m-uatt16ni6 toie

z Lai saveral coordinate systems are elso dierived. The coordinate trans formati ons re-
ciuired In the program may be categorized as folloWs: .

(1) Transformations inherent in solving the basic equtitons of motion~z.

(2) Transformations to provide input data to the guidance, autopilot,
-: and flight-plan programmer simulations.

(3) Transformeftions to present readout data in the most desirable form and
auxiiL-.iary Lransformations which may be required for the definition of certain
specir" paramciLora. These transformations may be deleted from the program when

they ar-e not required.

(4) TraasformationG to provide input data to connecting interplanetary
tra~jectory programs.

3.1 Coordinate Transformations for Rnsic Equations 0o' Motion - This section
dr-sn'ribes the coordirnte syntemi and. derlves the related transformations Linder
Categury (1) above. The coordinate systems and transformations required to des-
cribe the rigid airframhe motion in six degrees of freedom are modified for use
in the optional reduced-degrees.-of-freedomn problcems. The coordinate transforma-
Liorw which relate the aerodynamic angles and velocities to ground-referenced
vclocitics in thc prcocnec of' winds arc aloo prcaentod.

3. 1. 1 Body-Axes Body N

Coordinates - The Uoordinates x /
equations of motion Y y '
(Section 2) are solvedLo.oeu nti
in a body coordinate L orzon Coordinatesc

system (see Figure 3.1). X Horzo Cordnae

The origin of this system
is at the center of gravity-
of the aircraft with the x-
axis along the geometric / s.Inri)

lonj~itudinal axis of the 9Y_ /nril
body. The positive direc- OL/ Coriae
tion of the x-axis is from O oriae

the center of gravity to
the front of the body.%B
The y-Rxis is positive to the
right extending from the X qao
center of gravity in a
water-line plane. The

Figure 3.1 Relationship Between Inertial,
Geocentric, Local-Geocentric,

and Body Coordinates

12



"ecause eI-r.tia-haracteristies a thus-m7de indepndent of att8tnide.= .... , 1,_;

AcceleratIons and.vielocities computed in the x-y-z body 6Xis omit b6 reiited&
to velocities and accelerations referenced to a fixed point on the surface of the

r planet to (a) describe the motion which a fixed observer would sense, and (b) to

compute the aerodynamic forces on the body immersed in an atmosphere which essen-
g tially rotates with the surface of the planet (except for wind-s which are referenced

to a point on the surface of the planet).

3.1.2 Inertial Coordinates - The resolution of the body-axes motion. to the
otion referred to the surface of the planet will always be made through the

intermediate coordinate system assumed to be the "inertial" axes(l). The assumed
"inertialf coordinate system selected has as its origin the center of the planet
and is oriented so that the X-and Y-axcs are in the equatorial plane with the Z-.
axis coincident with the polar axis of the planet and positive toward the south
pole. The angular orientation of the inertial axes remain fixed (i.e., the axes
have no further rotation or linear acceleration) with the X-axis established by

the initial instantaneous longitude of the body. The positive direction of the
Z-"xis was selected so that the inertial coordinate system would cuincide with
the coordinate system for the flat-planet options discussed in Paragraphs 3.1.8,
3.1.9, and 3.1.10. This will permit the use of the same resolutions for some of
the coordinate transformations in both the rotating oblate-planet problems and
the rlat-planet options(O). it should be noted that this coordinate system is
used only for computational purposes in the program. A resolution, explained in
Paragraplh 3.1.4, will describe the body position in the customary spherical coor-
dinubt,'u. Figurc (3.1) aids in thu descrlpiion of Lhe uuordina-Lu ý's;yoLs adupLd.

3.1.3 Direction Cosines - The dl rfnetion cosines relating the body x-y-z
axes-to the inertial coordinate system X-Y-Z are obtained in the following manner.
Let 1-g, 1yj, i:. be tinit vectors alang the body ax"r x, y, z, respectively, and
let 1 1 y, lZ be ,init vectors along the inerLial axes, X, Y, Z, respectively.
The direction cosine matrix relating these two sets of unit vectors will be ,-f
the form:

ix L1 12 13 fx

1y m1 m2 m3  ly (3-1)

1, n2 lz

( A) An alternate inertial axis sysb4e i. a iu Soction 3.4 which
is normally assumed for certain astronomical work.

(2) This system is most convenient for the six-degree-of-freedom flat-

planet option but not necessarily the most convenient for the other reduced-
degree-of-freedom options. The cumplieations incurred in the latter case have
been accepted, however, as will be explained in Paragraph 3.1.7.

13



Per~torming the matrix multiplicatio i di~cated gives:

lx =111X+ 1 21 Y + 1 31Z

y= lX+ M21Y + m~z(3.2).

1Z = "lX + fl2 lY +n37

The derivatives of 1x, ly, 1. with respect to time in terms of their components
in the inertial system are found by differentiating Equation..(3.2). These
derivat~ives are:

lz = l1 1 X + 1 21 Y + 131Z

1Y=mliX + m2ly + m3lZ (3-3)

Iz= nllX + fl2ly + n31Z

The derivatives of ix, 1 ~, lz with respect to time are depondent only on the
change in dircetion oif the unit \rect~orq. Therefore,

~X~Ty - qlz

z= "3xl, -l ply

where w lX + qly+ riz

J!'quating the relations for lx from equations (3.3) and (3.4):

IIX+ 12lY + 131Z =rly qlz

Substituting the relationships for Yy and lv,,. respectively, gives the relation:

IIIX + 121Y + 131z r(mllX + m2ly +. m3lZ)

-q(nljx + n~fy +~ n - 3-5

By using -the component properties of a vector, the relations

111- qn1  (3. 6a)

12 = rm2 - qr 2 (3. 6b)

13 = rm3 -qn 3  (3. 6c)

are obtained from Equation (3.5).

Performing the same operation for the ly, and lz components defines the time

derivatives of the remaining direction cosines. These are:

14



ml=pn1  r11 (36)l-

n2=pfl2 -r12 (3. 6e)
VW_

3  pn3 - r13  (3.6f)

ql " pml (3.6g)

q.12 -pm 2 (36h

n3 = q13 -pm 3  (3.6i)

The nine Equations (3. 6 a) through (3.6i) ar, !ntegratcd to obtain the
instantaneous values of the direction cosines. isn lt-d of calculating the
direction cosines has been selected instead of the usual evaluation by means of
the Euler angles because, regardless of the order of rotation selected, there are
points at which certain Euler angles become ,uidefined. The direction cosines
evaluated by this method are always defined(3 ). TIhe .mthnd by which the ortho-
gonality of the direction cosines is maintained is described in Appendix Three.
The Euler angles may be calculated from the dii-r: -'inca if desired; however,
they are not required for component resolution.

The components of iertial velocity in the ýody cogrdinate sy.,iLem, u. v, and
w, will be resolved into velocity components X, Y, and. Z in the inertial coordi-
nates. Since components of inerLial velocity are hunoin in body coordinetes., a
r-oUL !OLuUio of 'oiponc:niz using the dirctiKon cosine6 given in Equation (3.6) will
JV- VoMponents of inerbial velocity in the inertial coordinate system, as follows:

1j ni2 11 V (3-7y)

13 m3  n3 w

3.1.4 Geocentric Coordinates - The components of velocity in inertial coor-
dinates will be integrated and. the displacements resolved into the geocentric
coordinates of latitude, longitude, and distance .rom the center of the planet.
With the aid of Figure (3.1), several pertinent geometric relationships can be
obtained. The angle, B. ropresents an inertial longitude which differs from the

(3) It is recognized that nine integrations are involved in the present
method of compiut.ation intsLaCi of the thrc. that are normally ,±e-r -ben*h•
Euler-angle rates are integrated to give the Euler angles. however, a coordinate
transformation is required to obtain the rates, and the sines and cosines of the
angles utst also be computed in the usual direction cosine computation. The
machine time required for the two methods of computation is comparable.
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. E S W_ planet -longitude change; (QL - LO), by the amount. 1pt- W (~ip the angula
rotatibnal rate of the planet.) The inertial anegle 1e given-b-. ..

B Tan-() 0.. .. 8)

and the instantaneous geocentric longitude of the body is:t

OL = Lo (3-9) (3,9)

The geocentric latitude of the vehicle, h, can also be expressed in terms of'
inertial coordinates. Referring to Figure (3.1):

O= Sin+- Z +2 (3.10)

and, the distance from the center of the planet is:

R -X2 + y2+z2 (3.11)

3.1.5 Local-Geocentric Coordinates - To describe the motion of' the body
relative to the planet, a local-geocentric-horizon coordinate systeta is ewjo,,oyed.
The Zg-axis of this system is along a radial. line which passes through the r-enter
of gravity of the bodWy and is positive toward the center of the planet. The Xg-
axis or this system is normal t-o the Zg-axis, and is positive northwardi; snd V.,
forms a right-handed system. Figure (3.1) shows the relation of this coordinate
system to the other systems assumed. The direction cosines relating the om'iunta-
tion of this system in inertial space will now be developed.

Tv Ioeedbe tie *Xg-y -A axes with
respect to the X-Y-Z axes, first rotate
about Z by an angle (130° + B) and then

X1 rotate about Yg through the angle (90°-
OL). The first rotation dei'iL1Ws the
intermediate coordinate system shown

180' + B in Figure (3.2). Using the matrix
methods of Reference (9) the transfor-
mation is given by:

X

or
Figure 3.2 - Intermediate Coordinate ' - Si 0

System Transformation From X, -Cos B -Sin B 0 iX
Inertial. to Local-Geocentric

Coordinates lYg Sin B -Cos B 0 .y

lZ0 0 1 Tz (3.12)



The second rotation Is rhown in Figure (3.3). The transformation matriX 'o the
second rotation is given by:

_ 7M

1X' Cos (900 -
0L) 0 -Sin (900 - OL) y' . -

""zg Sin (90 - 6L) 0 Cos (90 -L) 1Z

or \ V

l•X Sin $L 0 -Cos •L jL x,

11g 0 1 0 lYg (3.1)
9

Iz, Cos 0L 0 Sin OL Iz Z

Figure 3.3 Final Rotation
in Transformation From Inertial
To Local-Geocentric Coordinates

In this analysis, a positive rotation is defined in the same senns as that
adopted for vector cross products in a right-handed system. That is, a positive
rotation about thc z aic ..... . ..hcn tc ..- ....... into " ' y-axls; pojiLive
rotation about the x .axis when the y-axis rotatcs into the z-axis; and positive
rutation about the y-axis when the z-axis rotates into the x-axis. The interme-
diatc coordinate system X', Yg, Z will be eliminated according to the methods of
successive rotation, Reference (9). The complete transformation is given by:

lx Si•n L 0 -COR0L -CosB -SinB 0 iX

lyg - 0 1 0 Sin B -Cos B 0 1Y (3.lit)

lz Cos OL• 0 Sin eL C 0 1 lz

which can be reduced to the single transformation matrix.

lIX = I-Sin OL Cos B -Sin OL Sin B -Cos OL fX

ly _ Sin B -Cos B 0 ly (3.15)g

lz j -Cos OL Cos B -Cos OL Sin B Sin OL 1z

.± I' re.o,. uvwi.uau wi.l 'ub: defined at follows:

Txg ii Jil k1  i

lYg 12  J2 2 y(316)

lz i 3 J33 k3  z
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Where the i s, j I , and. Kts -are defined in ?'~qjutiOn (3.J)-4. -For .xr

-3 =Sin OL Sin B
MAL_

The resolution of inertial vclocity (in inertial components) to local-geocentric
components of surface referenced velocity is obtained by the following manipula-.
tion. Let I be the displacement of the vehicle in inei.tial space. Then:

aud the inertial velocity may also be written with respect to the local-geocentric
coordinates as:

5R +- (3. 18)

where 5R/bt is the velocity observed in the moving coordinate system Xa-Y -Z
S,. . z;*, tlb ai1 P velenvity oT the planet. The observed surface re.erenced

BR xgTxg + + Zclzg (3.19)

and

"W = -(")p Iz

The angular velocity vector will be resolved into coniponents in iocal-6uuc(ntriL
coordinates as follows :

P =- wp C5 OL IX9 - WP bin OL !Z8 0(3.20)

Writing the displacement vcctor in local-geuu~nLe'ic coordinatco,

R -R 1z (3.21)

The required cross product WP x R is:

W p x R = wp R Cos .L EYg (3.22)

For convenience, the unit vector lyg will be resolved into components in tue
inertial coordinates.

1-g =- 12 IX + j2 l + k2 1Z i(3.-23)

= SinBIX-Cos BY

SFrom the geometry of Figure (3.1) the relations:

CO X2 y2 (3.24)
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-- i -B A 3.~45-

Cos B - x (3,26)

rtý are obtained. Substituting Equations (3.23) through (3.26) into Equation (3.22)

gives the inertial components of the required cross product as:

Wp xR "W Yix -WI~ ly(3.27)X_-W

- - Substituting Equations (3.17), (3.19), and (3.27) into equation (3.13) gives:

*Xix + Yly + Z1Z XglXg + YglYg + Zglzg + WpYiX - WPXly

or collecting like terms,

(X - W.,-YJly + kX + WrX)1"~ 4., YV ,IV,+zaJ (3.28)

Converting th÷-,nit vectors lx, - y- 1Z to components in the moving system by using

the airection cosines determined in Equation (3.15), and equating components in

the moving coordinate system, gives the following relationship.I ,k
i 1 2 kp Y + w rN (3.2-9)

Ag 3 '3

One other coordinate system is used in tbF. point-mass reduced-degree-oX-freedom

operation of' the program. This system will be discussed and the transformation

dprived in Paragraph 3.1.10.

3. 1.6 Inverse Transformations - The preceding development completes the

calculetion of planet-referenced velocities and displacements. Several resolu-

tions are necessary, however, to trans.for informution In planet-referenced
coordinates bac& to body coordinates. These transformations will use the invezic

of the direction cosine matrices previously derivved.

Gravity components, calculated in the geophysical data subprograms, are

considered inputs to the central program. These components are normally specified

"in local-geocentric coordinates and must be resolved into components in body coor-

dinates. The first transformation will use the inverse of the transformation in

Equation (3.15) to resolve local-geocentric gravity components into inertial
gravity co•,lIonents.

gx i 1 12 i 3  gX9

g Jl J2 J3 0 (3.30)

ki k2  k 3  GZg
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The ~ wepwi]]. aQ3V~ t~n _±P nto _ 2r~vity. into the re". :.Cod

M-• ........ `3eon ste -vi11 rs-va -tu =-_ ýMW00

bo... -cos ipents -aj gy, g. The timiadazagA9
I i ~natefs with1 bocly noordlh~atea- was de,?ivtd -Peviously--md, is given in ~u~ UZi~- _

--The required transformation is, therefore:

r 12 13

W g ml m2 mn3 -l(3.31) At

The direction cosines are defined by the relations of Equation (3.6). A sequence
of resolutions similar to those leading to Equation (3.31) is required to resolve
local-geocentric components of winds into body-axeu components. To obtain inertial
components of wind the inverse of Equation (3.29) applies.-W L

xw +- pX J.. l J j 3  Y(332)

W+ I t2Zw I :I ,- I- 7,

The components w•pY and -wpX must be added to the result to obtain inertial compo-
nents of winds. Resolving inertial wind components to body-aixis components
requires the same dlrection-cosine matrix used in Equation (3. 31), and the body
components of winds are:

S' !i 12 l12 Xw

Vw 2 'l m2 m3 .w (3.33)
wwI nI no n3 Z

The body components of airspeed are determined by subtracting Glhe body components
of wind from the body components of velocity.

The body components of airspeed will be used to compute the angle of attack
and sideslip.

a = Tan'(W WW) (3.34)
\u - uw/

3= Tan-l(v - v_) (3.35)
(U - Uw/

The definitions of angle of attack and sideslip are consistent with the aerodynamic
data normally obtained from wind tunnel tests of sting-mounted models because of
the mt(L- IA Wi",.c..h the- G"*io my be rv.,ý, Thr' erres~anoind_ _ transformations from
wind axes to body axes are given as Section 3..111. If aerodynamic data as obtained
from turntable-and-strut mounted models are used, an alternate definition may be
required depending upon the procedure used in data reduction.
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3,.1.7 Peduced.-lr-r•eof-fraedQm At Outinet, The- - he_ •o-1-vwa.-
graphs describe the coordinate transiormtAtiozinr d tQe a urd• toA.

motion of the body when the program is operating 4-a several reduced-degree-of- F
freedom modes. From a program economics standpoint, it is more convenient to

jW solve the equations of motion in vehicle body axis (with the exception of the
Z1= point-mass option) and revise the coordinate transformations than to rewrite

the equations of motion because the limited-motion transformations are quite
simple. In general, however these transformations can not be obtained simply
by (leleting terms from the unrestricted-motion transformations because the
constraints imposed by limiting the motion imply certain planes of operation.
For example, the three-degree-of-freedom lvogitudinal analysis is obtainod by
excluding, among other things, the side force, which includes sidc-force

* - components of Coriolis acceleration. This restriction can be fulfilled only
when the motion is in the equatorial plane. When the restricted plane of motion

Sis recognized, some of the required transformations can be calculated from the
general transformations by suitable substitutions.

3.1.8 Three-Degree-of-Frcedom Longitudinal Analyses - The three equations
of motion involving the summation of forces along the x- and z-body axes and
the ol•,min+1 rtv mpm.ntp ahout the y-axis are solved for the translational
accelerations i and w and the angular acceleration 4. Integration of these
quantities yields the components of inertial velocity u and w and the pitch
rate q. Tntegration of q gives the pituih attitude with rcpect to the inertial
X - Z-axcz.

Fla t-Planet Probi•.,i - 'The inertial coorAillates in the flat-planet problem
are the . eievat.on-p.Lnc coordLanaTes. veouuiLy components in the Xg-Z
coordinate syoitom may be found by direct resolution Ghrough the angle C whiul.
is obtained by int'3grating q. The (Uirection couiinu r-blating t1,: body and X8_?.g
coordinates are:

XI Cos 9 Sin 1 x X
o 1 (3.36)

Zg -Sin 9 Cos 9 z
Sz

Zg

The velocity may be resolved using the same transformation, so that

S- Coso SinO= (3.37)
I-Sin 9 Cos 9 1w

Positions in the Xo-Z. system are then determined by integration. Components
of wind and gravitY afong the body axes are resolved using the inverse of
Equation (3.36). For winds:

UW Cs 9 -SinG jf kg
WW Sin 9 Cos 0 Zgw3
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The boday components of airspeed may be calculated and. the a

*, as in Equation (3.34). -

Tn the flat-planet problem, gX= zero aud 'g =r Therefore, the body
components of Sravity are:

1h gz gref Cos 9
(339

S -• -gref n 9

fRotating-Planet Problem - A three-degree-of-freedom longitudinal problem
with a rotating planet must be confined to the equatorial plane in order that
all components of Coriolis acceleration are included in the equ&6ions of motion.
This means that the coordinate system use( in this problem is the X-Y inertial
axes in the equatorial plane. At time equal zero, the vehicle lies on the X-
inertial axis. The inertial angle B is equal to L- L " t, as in the six-
degree pro1-iem, and may be expressed as a function of InertiaJ displacement:

B Tan-1 ((3.40)

"The angle B locates Uhe local-gcoccntric-horizon coordi.nates which will be
referred to as the Y6-Zs coordinates since X is not necessary in this problem
(see Figure (3.4):

z yg9

@ xX

Figure 3.4 - Relation Between Body Axes, Local-Geocentric,
and Inertial Coordinates for Motion in Equatorial Plane
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"The direction cosines relating the inertial-axes X - Y and. the body axe s -, my.
cobe determned by rotating the X-Y-Z system about X through 90° to define 'the "
coordinates, X-YI-Zl, and then rotating this system through 0 to reach body 1-79
coordinates. The transformation is defined by:

Sx IX I!:

y g9oo (3.41)
Yl X

z IZ

or, substituting the individual rotation matrices,

x Cos 0 0 -Bill 1 0 0 X

y = 0 1 0 0 Cos 90' sin 90° Y

z Sin O 0 Cos 0 0 -Sin 90g Cos 90° Z
t

&I LIIUILU.LaiL W16t 0V .L 0 y ULj A,1 - y' . I4L*& SJ
0and inert_1l coordinatesoare given by thQ elements of the resulting matrix.

x Cos 0 Sill 0 0 X

y = 0 0 1 Y

,4 Sin 0 -Cos 0 0 z (3.42)

2xpandJng the transformation

x = X U;os0 '+ Y Sin 0

y =Z

z = X Sin - Y Cos 0

But Z = 0 since the motion is restricted to the X-Y piULIe Mid Lhe required Lraab-
formation reduces to:

x Cos'O' Sin011 X

z Sin 0 -Cos 0- Y (3.43)

Inertial components of inertial velocity may be found by using the transpose of the
transformation matrix Equation (3.43)

Because positive rotations were used in Equation (3.41), the resulting body-axis
orientation is for a normal upright easterly flight. To obtain the proper orienta-
tion for a westerly flight, the rotation about the X-axis is negative and Equation
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(3.41l) becomes .

1.1

I Y
-T Iz Z (3.4i5)

Equations (3.43) and (3.44) the,. become

x Coso SinOej XI

z i-Sin 0 4+cos 0I Y (3.46)

and

A Con 0 -Sin '0 u

SY Sin 0 Cos 0 w (3.47)

A Eingle equation for mnh transformation may be obtained for both enisterly and

westerly flight by incorporating the constant Ka, as follows

lI Cos. Sin 0

z I Sin 0 .-K Cos 0 Y (3.48)

x Cos 0G KUSin 4)

14 'lin 0 -K 0
Cos 4 (3.119)

Ka=. +1 for easterly flight

Ka = -. fur westerly flight

The resolution of inertial components of inertial velocity to local-geocentric
components of planet-referenced velocity is obtained by setting OL = 0 in Equation
(3.29). The transformation becomes:

xj J 0 0 -1

This ma bCo sipife 0g + i
'_,,=ta -sfr n a 0

This may be simplified to a single-plane transformation by deleting X5 and Z in a
manner similar to that used to derive Equation (3.48).
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Sin B -Cos D X. ••..

(3.50),(3d II )• . z • -C o s B -S i n B. + W ." X .--

Th• inertial components of winds are determined by using the transpose of the trans- e--
formiation inatrix of Equation 50), are

xW "- pY1 Sin B -Cos B s3

+ W+ -Cos B -Sin B (351)

The tcrms w Y and w X are inertial components of the velocity due to the planet's
rotation. It will.be convenient to resolve this rotational velocity component to
local-geocentric components. This operation may be verified by substituting
Equations (3.17), (3.19), and (3.22) into (3.1B) and comparing cdmponents.

SinB -Cos B + Wp

Yw -Cos B -Sin B w (3.52)

The body components of winds are required and may be determined from the inverse
of the transformatiun matrix-of Equation (3.49).

11 ' (3.53)Ww, Sin ' -FKaCos . Yw I3.5
The resolution of wind componento from local-Goe ntii;'ic to body coordinates may
be accomplished by combining Equations (3.52) and (3.53) according to the method.
of Reference (¶9).

The transformation is:

u W Cos 0 Sin 0 Sin B -Cos B GwWJ4WpBi

""w Sin 9 -Cos ' -Cos B -Sin B

or

(Cos 0 Sin B (-Cos B Cos i +

-Sin 0 Cos B) -Sin B Sin 0) Yg +

(Sin 0 Sin B (-Sin 0 Cos B

+Cos 0 Cos B) +Cos 0 Sin B)

which simplifies to

uw S Sin (B-e) -Cos (B 0 - ) gw + W

ww Cou (B - 0) Sin (B -'0') Zgw (3.54)

25



"From Figure (3.4) the following relationship between 9, 8, and B may be written:

900 =-Y + G - Kq '0

g = 90g -K(B- ) 3.55.

Therefore:

SinG = Cos (B -))

Ka Cos = Sin(B - ) (3.56)

Substituting Equation (3.56) into Equation (3.5•4) and incorporating the factor
KC as defined for Equations (3.48) and ( 3 . 4 9)

uw KaCos 0- Sin 0 + wR- a

W KCSin 0 Cos 9 8 (3,57)

Comparison of this equation with Equation (3.38) suggests that the same wind trans-
formation matrix may be used for both rotating and flat-planet three-degree-of-
freedom longitudinal problems. The component w1,R must be included in the case of
the rotating planet, however, to ensure that the vector defined by the transformed
components is the same vector as described by the original components. The local
Euler angle 9 then is the only attitude angle required for resolutions in the
three-degree-of-freedom longitudinal analysis problem. The angle of attack is
computed as in Equation (3.34). The component resolution of gravity for the
rotating-planet mode oZ operwti•n of LhIs 1•rublzir is givcn by !".nliation (3.39)
since gX is also zero in the equatorial plane.

3.1.9 Three-Degree-of-Freedom Lateral Analyses - Three-degree-of-frecdom
lateral analyses are often performed in the design of aircraft, autopilots, and
guidance computers on the basis that the lateral and longitudinal motions are in-
dependent of each other. Although the information obtained from such an analysis
is considered quite valuable, certain inconsistencies are created in the mechanics
of solving the problem. The three-dC;,0ree-of-freedom lateral motion is not defined
completely by the three accelerations considered, as noted in Paragraph 2.3.
Therefore, the motion calculated is treated as a perturbation motion. The assump-
tions made concerning this motion are:

(a) The lateral displacement from a given straight-line track is due only
to the velocity imparted by body side-force accelerations. The displacements
from the reference line due Lo the axial velocity and yaw angle are neglected.

(b) The center-of-gravity of the body is assumed to travel in the plane
established by the motion described above. The vertical and lateral displacements
due to the sinking velocity and the roll attitude of the body are neglected.

The coordinate systems and transformations which retain these assumptions
and constraints are described and derived in the following paragraphs. The intent
of this option is to provide a digital siwuJ.ation of the normal lateral-dynamics
problem assumed for control-system analysis, and further, to provide this problem
option in such a form that the validity of the assumption of decoupled motion may
be easily verified. The inconsistencies of the usual dynamic analysis will be
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observed'as the discussion proceeds. For operation of' the program in--tha~ee-7
degree-oftfreedom lateral mode, the eqtAtions of motion describinV tJ6 aiOn
in the y direction and the two moment equations for yaw and roll are ••lvea' forSp., r, and . The velocity components u and w appearing in the y-acceleration
equation are programmed input functions, as noted in Paragraph 2.3. The computed
acceleratiiQns are integrated to obtain the body angular velocities p and r, and
the body component of velocity v. Body angular

•--- velocities will be resolved into inertial com-
• ponents. The required rotations are conveniently

represented on a unit sphere, Figure (3.5). The
labelled pcints represent the intersection of a
particular coordinate axis with the surface of g x
the unit sphere. Since only a flat planet is Tit- y7Xg\
considered in this optional mode, the Xg-Yg-Zg
coordinates are the inertial coordinates. Only 7
two rotations are required to orient the body
axis, x-y-z, with respect to the inertial axes /
since he Euler angle 0 is arbitrarily set to z
zero -. The first rotation is about the Zg-
axis through the angle * and the f.inal rotation z
is about the x-axis through the roll angle 0.
The angular rotation rate of the b1ody axes may
be written as the vector U. Figure 3.5 - Unit Sphere

Diagram For Lateral Motion
= p I c z (3.58) Coordinate Tr'ansformations

which may be expressed in the x-j-ZZg system (uince thece are the axes about which
the rotations occur) as:

. 0 lx+ . ap~ (3.59)

The unit vector iz has compononts in the x-yi-.Zg coordinate system which are:

l~ Cos 0iz - SinOT

(4) This assumption is normally made in the three-degree-of-fr.edum lateral
dynamic analysis, but is inconsistent with the assumptions regarding the velocity
components u and w which define the body angle of attack (a = Tan- 1 (w/u)).
Since the Euler angle W is the angle between the horizontal plane, in which the
lateral motion is assumed to occur, and the body axis, x, the Euler angle should
bc 0 = .Th• . . .discre-ancy is normally dis regarded in the perturbation analyses
conducted in lateral dynamics investigations and will also be neglected here.
This is done so that an evaluation may be obtained of the errors incurred by
assuming the motions in the longitudinal and lateral planes to be decoupled.
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,Subkitutlog this exprO:Aon for.th•qbopy. 4,t vector .,n the. z-directio into .

Comparing the scalar coefficients of similar unit vectors in Equations (3.59)
and (3.60) provides the required relations for resolving the body angular rates

•_--,into Euler angle rates.

-r Sin0 (3.61)

= r Cos

However, the perturbation displacements in the pitch plane are not permitted in
the analysis, as noted in the introductory paragraph to this section. Therefore,
the velocity

= -r Sin

must be disregarded, since it rotates the plane in which the lateral perturbation
imotion is assumed to occur. This is the second major inconsisi.ency of the normal
lateral analysis. The resolution which will he used is:

4r = r Cos $
Theue relation8 point up a third inconsistency of the normal lateral dynamic
analysis, which is that the roll and yaw rates above are integrated to define
the perturbed attitudes of the body. however, these are not the total motion
of the body and the displacements which actually occur due to the combinations
of u and w -velocities in the * and 0 directions, respectively are ignored. The
gravitati.'nal component resolution required is:

gV = g•, Sin 0 (3.62)

since the pitch angle 9 is arbitrarily set to zero and angle of attack is ignored.

The component of wind in the y-direction may be calculated by resolving the
Yg uompcnQnL uf wind- to the body axes.

vw = Ygw Cos Y _ y

From the spherical trigonometry of the triangle of iuference, Fi6ur'e (5),

Cos Yg y = Cos 0 Cos

Therefore,
vw = Ygw Cos 0 Cos 4 (3.63)
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r The bt•jV component of translational velocity will be resolved to a component of
velocity along the Yg-axis only, as velocities in the elevation plane are notcofmPuted ii this option. This resolution mty be written:

.V Cos = v Cos ¢Cos ( 3 .64)

3.1.10 Point Mass Analyse2s - For this option the rotational body rates
p, q, and r are "uidefined. It is, therefore, necessary to rederive the equations

-- of motion in such a manner as to avoid this complication. The most convenient
coordinate system is conuidered to be a Cartesian planetocentric coordinate
system designated Xe-Ye-e. The origin of this system lies on the polar axis
of the planet and in the equatorial plane. The Ze-axis is collinear with the
polar axes and positive toward the south pole. The Xe-axis is in the equa-
torial plane and is fixed at the longitude of the vehicle at time equal zero;
(i.e., the coordinate system rotates with the planet) the Ye-axis is positioned
to form a right-handed system. The inertial coordinates X-Y-Z and the coor-
dinates Xe-Ye-Ze coincide at time zero.

The components of the planet-referenced acceleration are integrated to
obtain the plenet-referenced velocity components Xe-Ye-Ze. Vehicle positions
in this coordinate system are determined by integration of these velocl...s.
The position of the missile in a planet-referenced spherical coordinate system
will be determined. The spherical coordinates are longitude, geocentric
latitude, and distance from the center of the planet. The angle "C" (see
Figure (j.6)) represenLs the change in longitude of the vehicle and may be
Wittcn:

C =Q _ (3.65)

Thus the angle C differs from the angle B of the six-degree-of-freeaom program
by the planet's rotation, wpt. The angle C is related to the vehicle dis-
placement by the expression:

C = Tanl (e) (3.66)

The geocentric latitude, altitude, distance from the planet's center, and
geodetic latitude are computed as in the six-degree-of-freedom prosram, (see
Paragraph 3.1.4). Components of planet-referenced velocity Xe-Ye-Ze will be
resolved into velocity components in local-geocentric-horizon coordinates
Xg-YgzZg. The direction cosines describing the orientation of the local-
geocentric horizon relative to Xe-Ye-Ze coordinates may be derived in a manner
similar to that of the six-degree-of-freedom problem, (see Equation (3.15).
The only difference is that the angle C must be used in place of B and Xe-Ye-Ze
used in place of X-Y-Z respectively. Since B = GLo - @L - wpt, the angle C
may be calculated by setting wp equal to zero in B. Therefore, the direction
cosines required to orient the local-geocentric coordinates may be calculated
au in the six-degree-of-freedom problem if' is set equal to zero, since
both local-geocentric and Xe-Ye-Ze are planet-fixed coordinates. The required
resolution is obtained from Equation (3.15). The subscript zero indicates
that the direction cosines are evaluated with p = 0.
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The planet-referenced velocity may be calculated from its components:

V ý g2 2 (3.68)

SNP
tna1-Geocentri c

Horizon Coordinatesy-
Yg

- --

Y. C

Figure 3.6 Relation Between Local-Geocentric,
Inertial, and Earth-Referenced Coordinates for Point-Mass Problems

The flight-path angles(5) are computed as in the six-degree-of-freedom problem:

a =jSini g 2 ) (3.69)

7= Sin- 1  ( ) (3.70)

Equations (3.68), (3.69), and (3.70) are applicable to both the oblate- and
flat-planet options.

(5) The flight-path angles are defined by surface-referenced velocities
with respect to the local horizon and longitude lines.
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The aerodyamie and thrust forces for the point-mass. problem will. rormnlly -. -
be summed in a wind-axis coordinate system, XA-YA-.ZA. Since the eqT.ttone ts
of motion are solved in the Xe-Ye-Ze coordinates, the wind-axis cqomponens of

mow forces must be revolved into the components of this system. 7-

4
The forces will first be resolved from the wind axes to the lcaal-

geocentric coordinatce. The wind axes are defined relative to the local geo-
centric axes by three angles; heading, a; flight path attitude, 7; and
bank, BA.

BA-

XXA

F ,-Y YJ1

yjý Xy
Y,

z.z

Figure 3.7 -Relationship Bietween Local-Geocentric
Axes and Wind Axes

The transformn+Annsnr

t Cos G sin a 0 Xg

/ -1sing a Cosa 0 -y.x'7rVX g 0 o

.10

, Xg

Yg

(X XA Cos Y 0 -sin 7 X'

\Y 0 1 0 Y1

S7z_ sin 7  0 cos 7 Z

XA 1 0 0 XA

BA 0 COB BA sin BA Y1

ZA 0 -sinB•A cos BA Z11
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The complete transformation then is:

XA COS 7 COC•So 7 ein a " -sin ,

YA -sin a aos BA cOs a cos BA COB 7 sin BA Ya (3.71)
+ sin 7 cos a sin BA + sin y sin a Oin

ZA sin a Sin BA -cos a sin BA con 7 cos BA Zg
+ sin y cos a cos BA + sin 7 sin Cos C BA

- which will be defined as

rI aI tI Xg

r 2  B2 t2 Yg (3.72)

r 3  53 t3 z

The resolution of forces from wind axes to local geocentric becomes:

FXg rI r 2  r 3

Fy1  2 E; YA(373

FZgI ti t 2  t 3  I FZA

For the rotating-planet, the local geocentric components must be resolved to
components in the Xe-Ye-Ze system. The required direction cosines are given
by Equation (3.67) evaluated using the angle C in place of angle B.

FXe ilO 120  130 FXg

Fl0 JJ0  J30 ryg (3.74)

FZe Jlo J20 J30 FZg

The combined transformation from wind axes to local geocentric will be defined
as a single matrix.

Fxe 01 02 03 -FA mrex

Sm_ FYA mgy& ( 3.75)

FZ e q q2 q3 FZA mgze
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3.1.11 Bo.y-Axes to Wind-Axes Transformation To permit the u -e of bady -(f -
y, z) axes aerodynamic data and to convert the body axes componenst. of tht•s.t i

_to the wind axes system, a coordinate traneformation must be made. The coor-
dinate transformation below is first through the angle of attack, a, and then
througz an auxiliary angle, p'.

/. -
zU

x

vw

ta n g ' - V co s c • I i, x

y'tanaP. 3co3c a

y XA

Figure 3.8 Relationship Between Body Axesand Wind Axes
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1 xcos a 0 sin a x

S~y' 0 1 0" y.... .

Z- -in a 0 cos a z

XA cOs 01 sin s' 0 x

YA -sin [3 cos pt 0 y

ZA 0 0 1

Cos P Cos a' sin 01 cos 3in a x

-sin P' cos a cos 01 -sin p' sin a y (3-76)

-sin a 0 cos a z

which is defined as the u-v-w direction cosines.

XA uj U2  u 3  X

YA v, 2• (3-77)

w12 w3  z

S-Cr.. Ul u2 u 3 -CA

i _ = vI v" Cy (3.77a)
I - " W -o--
"CL 2 3 -N

The relationship between body and wind-axes aerodynamic coefficients is then
established, noting the negative directions of the coefficients relative to
the axes system.

If the assumption is made that the budy xy plane lies in the vertical,
0, an alternate transformation can be made (Figure 3.9) using the pitc(h

angle 0, the difference between the azimuth heading and the yaw angle, a -

and the flight path angle, 7.

The direction nosines required for this transformation from body to the
vertical wind axes system are:

XAV cos y 0 -sin y cos (a-*) sin (a-*) 0 cos 9 0 sin 9 x

YAv 0 1 0 -sin (a-*) cos (0-*) 0 0 1 0 y

ZAV sin 0 cos7 0 0 1 -sin 9 0 cos 0 z

(3.78)
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Figure 3.9 - Relationship Between Body Axes and Vertical
Wind Axeu With Zero Body Roll Angle

The angles y and a are computed in the point mas. options; 9 and * are not.
Applying the law of sines to the spfleL'ical triangle XA;ZIg-E:

cin Jr - s.Ln W (379)

Coc 7

The sine of p' may be expressed in terms of the body coordinate components of
velocity as:

sin (' - -_3.80)

V 1 U2 +_v2 + w2

Dividing numerator and denominator by u and expressing in terms of a and

tan Dsin p' = •i(3.81)
si1+ ta-n a+ tan 2

Substituting Equatioxk (3.81) into Equation (3.79)

/ •tan• N
S" - = sin-1  cos 7 i + tan2 a + tan2  (3.82)
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Since the body roll angle is zero;

Wk - + 7' (3.63)'i
Applying the law of bises to triangle XAýY-C:

(sin (3.84)sin I _ rn

The angles Q and a-* can now be evaluated in terms of a and • for use in the
vertical wind transformation, Equation (3.78).

tThis transformation from body axes to a vertical wind axes, with the
assumption of zero roll, is the transformation used in the computer program.
1•us, the load factors computed are also in the vertical wind axes system.
The transformation from the vertical wind coordinates to the local geocentric
is Qiven by Equabiuu (3.71), noting that the bank angle is zero for the
vertical wind axes system.

3.1.12 Winds in a Point Mass Analysis - The effect of wind can be intro-
duced in a point mass problem when the vehicle's angular position is dictated
by an assumed perfect control system. The wind computations in this section
are specifically designed for a control system using three rate-integrating
gyros. The wind components will produce an angle of attack and an angle of
:;ideslip which nre not removed by the assumed aerodynamic stability of the
vehicle, since the vehicle's angulia- pusition is fixed by other means, e.g.,
rtaýtion control - IhP ,,hove condiLiulib iuusL bc rcalizcd before thp optional
computations presenLed in this of '"ctlon can provide meaningful resuults. Only
Flight Plan Programmer 10 m.aeets thcsc requisites.

The change in Ca and ý due to the three components of wind is to be deter-
mined assuminG Lhat no instrument errors are present. Figurte (3.10) contains
the geometry necessary to consider winds. XA-YA-ZA is the location of the
wind coordinate system before the perturbing wind components are introduced.
XA-YA-ZA is the new location of the wind coordinates after the perturbation
occurs. XA is coincident with the airspeed vector, ZA is coincident with the
lift but is positive In Lhe opposite direction, YA defines the side force.

The three local geocentri. components of winds will be introduced in a
tabular listimg with altitude as the independent variable. Let the three
components of wind be written as follows:

Vw X --lxg + Yg yg + 'g zg (3.85)

Xg North
.g East

Zg Directed toward center of earth

The airspeed vector is given by:

Va Vg - Vw (3.86)

36



SWIND COMPONENTS FOR A POINT MASS.ANALYSIS
XAYAZA IS A WIND COORDINATE SYSTEM O " A c-D A CL = -cLAzA
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FIGURE 3.10
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where V is the velocity relative to an atmosphere which has the sane angular
"velocity as the earth, The three local geocenttic compo• ets of :i pe'deT

Va = ( - i) !Xg + - * (i - lZ . (3.87)

The elevation and azimuthal flight path angles of the airspeed vector are:

T. sin- ~I g~ (3..88)•_ • Va i

-= tan _" (3.89)S+ /

The summation of the external forces in Option Six is performed in the
wind coordinate system (XAYAZA), and the resulting components are resolved to
the local geocentric system through the r-s-t direction cosines. The r-s-t diLrec-
tion cosines are derived with the lift vector restricted to the vertical plane.
This derivation is unsuitable when the direction of the lift is dependent on
the vehicle's roll angle. •te additional angle required to define the direction
of the lift (negative ZA axis) is the bank angle, BA. The bank angle is
measured in a plane perpendicular to the airspeed vector (Va) and is referenced
to the ',ertical plane containing XA. The resulting r-s-t direction cosines
will be altered by adding the rotation about the XA axis through the bank
angle to the sequence of rotations, thus leading to Equation (3.71) transp.red.

FXg cos TA cos oA -ain UA sin 7A cos vA 1 0 0 -a

j Fyg cos 7A sin GA cosGA sin TA sin 0A 0 cos BA -sin BA Fy

g coo A 10 sinBA coBAI

where FXa, Fy , and FZa are the components of aerodynamic and thrust forces in
the wind coordinate system. Performing the indicated matrix multiplication
gives:

Fg cosYA cos aA -sinUA cos BA sinaA sin BA FX)
+sInYA cosGA sin BA +sintA cosoA cos BA

FYg = cosA sinsA cosoA cos BA -coseA sin BA FYa (3.90)
+sinYA sinaA sin BA +sinVA sinoA cos BA

FZ -sin TA costA sin BA co7 cos BA a

38



The - direction cosines are to be defined by corrOepoInding p0o-ittoise -inif equation (3.90) and (3.91). "
FX r1 r2 r3 Fa

Fg sl (3-91)

The development of the direction cosines relating the wind and body

systems presented in Section 3.1.11 is also performed with the restriction
that the lift is in the vertical plane. This restriction will be removed by

permitting an additional rotation of the existing wind coordinate about the

velocity (VA) through the bank angle, BA. This change is required to permit

the correct summation of aerodynamic and thrust forces. The additional rota-

tion matrix 1.s made to Equation (3.78).

XA 1 0 0 ~cos7A 0 -sin7A cos(a-*) sin(a-*) 0 cos9 0 sino xI

YA 0 0es R•A n IA 0 3 0 -sin(c-*) co(a-*,) 0 [ 1 Y

ZA 10 -sin BA cos BA sinfA 0 cosTAI 0 1 sinG 0 coso zi
(3.92)

3.2 Guidance and Autopilot Coordinate Transformations - The vehicle
attitude information taken from the gimbals of a stabilized platform and the
outputs of platform-mounted accelerometers may be required in certain autopilot
and guidance-system computations in the Six-Degree.-0f-Freedom FLighL-PaLh
Study computer program. This section presents the derive-tion of the equations
relating accelerometer and attitudl information to data computed in the
central program. The method for deriving coordinate transformations for any
gimbal arrangement is presented for reference.

3.2.1 Gimbal Arrangements and Rotation Sequences - Three frequently used
gimbal arrangements will be considered in this section. Each gimbal is

equivalent to an intermediate coordinate system in a series of Euler-angle
rotations. Reading from the inner gimbal to the outer gimbal (and neglecting
redundant gimbals) the arrangements considered are:

(1) Yaw-Pitch-Roll

(2) Pitch-Yaw-Roll

(3) Pitch-Roll-Yaw

where the analogy between coordinate system rotations and gimbal movement is
used. Other gimbal arrangements are possible; however, the three discussed
in this section are the ones most frequently utilized. The transformations
for the alternate arrangements can be obtained using these same techniques.

3.2.2 Euler Angles - In the central program, the direction cosines re-
lating the vehicle body-coordinate system to a fixed inertial system are
calculated by integrating functions of the body angular velocities, p, q, and
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r. The. diriot-es l the boy and tia
by the cosines of the angles between the varlous axes ofk the- coord4•nae] s ---m
and are dependent only upon the position of the body coordinates referenced
to inertial coordinates. That is, the order of rotation selected to arrive at
a certain orientation does not alter the numerical values of the direction
cosines for that orientation.

Each individual direction cosine may, therefore, be defined in terms of

the Euler angles from a given sequence of rotations. These definitions will
provide the Euler angles of the body with respect to the platform coordinate
system for the three rotational sequences selected.

The direction cosines, in terma of the three sets of Euler angles, will be
derived using the method of Reference (9). The technique used is to find the
direction cosines for each individual rotation in a sequence and determine
the complete transformation by multiplying the individual direction cosine
matrices. The overall picture of the rotations is best observed on a unit-
sphere diagram. The points on the unit sphere represent the intersections
of the coordinate axes with the surface of the sphere.

The order of rotation anQ the axis about which rotation occurs can be
descriibed using the following diagram.

AXIS AND ROTATION OHDER

X Y Z This diagram indicatua that the
S* 1. first rotation is about the trier-

T1  2 tial Z-axis through the Euler
2. angle *. The second rotation is

x •71 about the intermediate Axi tl
0 3. through the angle 9. The final
x y V. rotation i abouc the body

x-axis through the angle V.

The derivation of each sequence of rotations will proceed in the follow-

ilug manner:

(a) The order of rotation will be defined.

(b) The unit sphere showing all three rotations will bV presented.

(c) The individual rotations will be shown in three separate diagrams
that contain the plane perpendicular to the appropriate axis of rotaion.

(d) The direction cosines for each individual rotation will be writ.ten
in this manner:

Ex C y Cz x X

-- CImx Cny OIZ Y

x CX Cxy CxZ Z

4o



where Cjj is the cosine of the angle between the i and J axes.

(e) The matrix of' direction cosines relating the inertial and body Coor-

dinates will be determined by matrix multiplication. V
The computation sequences required for these computations are outlined by the

_fu~netionala flow diagram, !'gure .

1YW PITCH-ROLL ROTATION

AXIS AND ROTATION4 ORDER

Yx 
Q2.

"" y z

Figure 3.12 Unit Sphere For
Yaw-Pitch-Roll Sequence of Rotation

n Y

FIRST ROTATION

Cos Sin 0 X 1 1Ž.'s•iix
=-Sin Cos V 0 Y

Iz 0 .0 1 Z

SECOND ROTATION

x Cos @ 0 -Sin 9

n 1 0 1

Sin 9 0 Cos 9 ZJ
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TwIRD ROTATION

x 1 0 0 x

Y 0 Coil~ Sin$ x

__ z 0 -sin Cos

z
The transformation matrix is given by

x•x

z iz

or, In terms of the planar rotation matrices, the intermediate axes are elim-
inatod by

X 1 0 Coso 0 .4-in 0, Cos Sin 0 x
y 0 Cos Sin ,• 0 1 0 l-Sin $ Cos 0 Y

I -Sin 6 Cos$ Sin 0 0 Cos j 0 0 1 Z

The direction cosine elements of the transformation matrix are obtained by per-
Currling the indicaied multiplication. For the yaw-pitch-roll rotational
sequence

x (Cos 9 CosW) (Cos 9 Sin *) (-Sin @) IX

(-Coo 0 Sin * (Cos 0 Cos * (Sin Cos ) Y

+ Sin 0 Sin 0 Cos ) + Sin Sin Sin *)

z (Sin 0 Sin* (-Sin Cos * (Cos €Coo 0) z

+ Cos Sin Cos) + Cos sin Sin*)

(3.93)
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FTCM-YAW-ROLI4 ROTAT2ION

S/ ri{
AXIS ATM) ROTATION ORDER

Y -

2.
/ X!

3.x y z

Figure 3.1-- Unit Sphere For
Pitch-Yaw-Roll Sequence of Rotation

F l tU3TATI'iON

I Cos o' 0 -Sin Q X

K0 1 0 x

Ti Sin 9' 0 Cos o' z

yZ
z

SECOND ROTATION y

x Cosflr' Sin' 0 \

I = -Swn*' Cos *' 0 1'Y f

rI 0 0 1It



- I THIRD R~OTATIONN

•z 0 0 0 x I x

x X

z Z

or, in terms of the planar rotation matrices, tha intermediate axes are elim-
inat0do by

x 1 0 0 Cos \' Stn *1 0 Cos go 0 -Sin 911 X

z 0 -SinO' Cos O' 0 0 1 Sin 9' 0 Cos G,

The direction cosine elements of the transformation matrix are obtained by
performing the indicated mulp o atincaton. For the pitch-yaw-roll rotational

x (Cos *1' COG 9') (Sin *') (-Cos *' oil, G) IX

(Sin 1 f Sin @1 (Sin O' Cos 0'
y -(Cos ' Cos ' 0)

-Cos 0 Sin' Cos ' + Cos 1 SSin 0 Sin V') Y

(Cos 0' Sin 9' (Cos 0' Cos G'

(-Sin O' Cos *")
+ Cos Q' Sin *' SinO ') - SinO ' Sin Q' Sin *') jZ

(3.94)
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V - PIT -ROLL.YAW ROTATION.

-- AXIS AND ROTATION ORDER

x z

f 0" 2.

3.
y x y

zz

Figure 3.14 Unit Sphere For
Pitch-Roll-Yaw Sequence of Rotation

FIRST ROTATION

• ~ Cos 0" 0 -Sinf@" X Q ! /\".X

Y= 0 1 0

T1 Sin 0 '" 0 C06 "

z

SECOND ROTATION

10I~ Cos O S in ~ " Y y

0 -SinO" Coso""f 1

4,6



- THIRD ROTATION x ,-

X Cos m"Sn It1 0I

--Sin *" Cos 0" 0 z.

z 0 0 1 z

The transformation matrix is given by

x X

y 01j1 off Y
z z

or, in terms of the planar rotation matrices, the intermediate axes are elim-
inated by

XJ COU *" Sin r" 0 1 0 0 Cos 0" 0 -0i1 g" X!

y -Sin of Cos4' 0 0 Cos" 8in 0" 0 1 1
7.1z 0 0 1 0 -Sill" Cos" Sin 9" 0 Cos " j7.

The direction cosine elements of the tranaformatio±: tatrix are obtained by
performing the indicated multiplication. For the pitch-rcll-yaw rotational
sequence

(Cos #" Cos I" (-Cos *" Sin Q" gx ~(Sin i1" Cos v")
+ Sin Sin " Sin 0 ") + Sin *" Sin 0" Cos 9")

(-Sin "0' Cos 9" (Sin G" Sin 4r"
(Cos -r" Cos ") Y

+ Cos V" Sin 0" Sin 9") + Cos +"' Sin 0" Con 9")

z (Cos 0" Sin 9") (-Sin 0") (Cos 0" CoB 9") Z

(3.95)
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STle direction cosinea rela.ing body and inertla1 -oordinates are asslgined-.heý.-
following symbols in the centra -program (see Equataon o

3 1x 11 2 13 X

I = 1 f2 m3 Y (3.96)

z n n2  n3  Z

By comparing identical positions in the matrix of Equation (3.96) with the
matrices in Equations (3.93), (3.94), or (3.95), the direction cosines above
are defined in terms of the appropriate sequence of Euler angles.

3.2.3 Platform Coordinates - An orthogonal platform coordinate system,
Xp-Yp-Zp is defined by the sensitive axes of three mutually perpendicular
accelerometers. The direction cosines describing the inertial orientation of
platform coordinates will not be derived. The angles used to orient the plat-
form are the inertial angle, Bp, geocentric latitude VLp, and azimuth A. The
sequence of rotation is given in the following di~igram:

AXI1 AND ROTATION ORDER The first two rotations coincide with
the sequence used in Equation (3.15)

X Y to define the local -geuctnt-i,,-hurizvui
(1800 +Bp) 1. coordinates. The direction cosines

Y Z which relate the local-geocentric co-
(Cooi)_ P. ordinate system to the inertial coor-

X, 4" Zu dinates will hb mqe,1 f~r th first
At' 3. two rotations.

X_, Y_ z,

_U08 Bpo Sin OP -Sin Bp Sin O -Cos OLP X

Yg Sin Bp -Cos Bp 0 Y (3.97)

Z8 Cos BP Cos -Sin Bp Cos S0 Sin ,, z
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Tim direction cosines dinig tho pyatform coordinaten with reference to
local-geocehtric horzOn: cordWat-•-s -may b. QObtaUd& by rQating--about -the
Zg-axia through the azinauth angle A, as ohn i gle(3. 5)

xg /

ILP

-- /x

B. / /
p

Figure 3.15 Relation of Platform and
Local-Geocentric trorilzon Coordinates

The transformation ,atrix for this rotation is:

fjsA Sin A
-"Sin A Cos A 0 T" ( 398)

The direction cosines defining the Xp, Yn, and Z platform coordinates may then
be determined by substituting Equation (3.98) into Equation (3.97).

The direction cosines defining the transformation from the inertial coordinate
system to the platform coordinate system, in terms of the orientation anglea, are:

X (-Cos Bp Sin '4 Cos A (-Sin B Sin OLp Cos A (.Cos OLP Cos A) X

+ Sin Bp Sin A) -Sin A Cos Bp)

Yp (Con B Sin •• Sin A (Sin BP Sin ST- Sin A (Cos 8in A) y

+ Sin Bp Cos A - Cos Bp Cos A)

Zp (-Cos Bp Cos OLp) (-Sin Bp Cos hrp) (U7" YLp) Z

(3.99)
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For convenience, the direction cosines in the matrix will be defined b-3 the notation,

" Xp al a-; ?L3 X

S...Yp =bl b2 b3 Y (3.1o00)

SZp Cl 02 c3 Z

3.2.4 Platform Angles for a Flat-Planet Problem - For a flat-planet
problem, the orientation of the platform coordinu&Le system will be assumed to
coincide with the flat-planet coordinates. Therefore, the angles measured on the
gimbals of this platform may be determined for the three gimbal arrangements
considered. For the yaw-pitch-roll gimbal system, the following direction
cosine relationships are obtained by comparing corresponding positions in the
matrices used in Equations (3.93) and (3.96). Five elements are suffieient to
define these angles.

1 -Sin 0

12 = 0os 0 Sin *

I = k*09 9 Cos * (3.101)

m3 =Sinn Cos 9

n3 = Coo • Coo 9

Tshe fi'rtA equation defines the angle Q. The angles • and • may be dcfined
explicitly by combining the second and third equation and the fourth and fifth
equaLion, Lhuu,

Sin 9 = -.

Tan i = 12/11

and Tan = m3/n 3

For the flat-planet problem with the platform at: ilized to coincide with
the Xg-Yg-Zg coordinates, these angles represent the angles measured on the
gimbals and will be designated with a subscript p.

= .Sin- 13

*p Tan- 1 12/11. (3.102)

Op = Tan-i m3/n3



• •-• • • , r•.-, -- -. .. -_. -.-ch - --•, .... - = =" -- •-• • •_=

Sie laly the wngles measured on a pitch-yaw-roll gitabal'arrangem -e . t m .ay
be computed by comparing identical positions in the matrices used in Equations
(3.94) and (3.96).

• l•1 - sin *PI•=

11 pCos * Cos '1
p

13 -Cos *1 Sin go
13 p p

m2 COB Cos vr
p p

n2  -Sin $Cos * (3-103)
p p

Then

Sin4 ' = 12

Tanr G M- -'1/1

pS = -n/m

Again for the flat-planet problem, the gimbal angles for this arrangement are:

Wi!= Sinl- 12

Opt = Tan•-' 13/1

- = Tan-' -n 2 /m2  (3.104)

The appropriate direction cosines for the computation of the angles for
a pitch-roll-yaw system are:

n2 -Sin O

"12 = Co4r; Cos 0

12 =sin Co (3.105)

nI = CCos ' Sin Olt

n = Cos d" Cos W

The platform angles are found from these direction cosines to be:

OP -Sin-1 n2

9 = Tan-i u,/n 3  (3.1o6)

*" - Tan-i 12/m2
P A
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-Fo_ r the flat---plwket.pr9oblem, the anegles derived in \Rcig on (jo1}
through (30.106) represent the a1311tudes]i of QiLUF:V_--

__ Xg-Y,-Zg flat-planet coordinates and also with repect t6o a}'1P-f-er m dd4-ate
system whose respective X -Y Z- axes are parallel to Xg-Y--Zg, Si~nce the
orientation of the platform ln this problem also corresponds to the orientation

_3Aof the imaiall coordinates X-Y-Z of the rotating-planet problem in the equatorial
plane, these angles are also the inertial attitudes (T, 0,(D) of the vehicleleW-• ..... with res}pect to X-Y-Z coordinates of the rotating-planet problem. The com-
putation of these platform relations are summarized, along with the accelero-
meter indication in Figure (3.16).

3.2.5 Platform Angles for Rotating-Planet Problem - The attitude angles
available from the orientation of the platform gimbals will also be required
in the guidance and control subprograms for the rotating-plane problem. In
Paragrarh 3.2.4, the direction cosines relating the platform coordinates and the
body coordinates were known, and it was relatively simple to obtain functions
of tha•c platfo+rm angles. For the rotating-planet problem, it will be necessary
to express the direction cosines relating the body and platform coordinates
in terms of the i-m-n and a-u-c direction cosines. When this is accomplished,
the procedure developed in Section 3.2.4 will be used to obtain the platform
angle,. Let this required set of direction cosines be defined in general form
as:

Xp dI el f, x

d2 ep f2 y (3.107)

Zp d3 e3 f3

The direction cosinoe in this 3.-by-3 matrix may be defined in terms of'
any one of the three sequences of rotations derived in Equations (3.93),
(3.94), and (3.95). For the yaw-pi-tch-roll sequence, this matrix ip obtained
by using platform Euler angles in Equation (3.93).

X (Qoo 0 cos *p) (Sin Op Sn O Coc (CoB Op Sin Op Cos *r x

- Cos O Sin *p) + Sin * Sin O )

Y (Cos Op Sin *p) (Sin 0,, Sin Sin top (Cos 0p Sin Op Sin , y

+ Cos Op Cos *P) - sin Op Cos *p)

zp (-Sin %) (Sin 0. Cos %p) (Cos Or Coo Qp) z

(3.108)

The d-e-f set of direction cosines will be expressed in terms of the a-b-c
and 1-m-n direction cosines. The a-b-c direction cosines relating plbtform
and inertial coordinates were derived in Equations (3.96) through (3.100);
these a-b-c direction cosines may be evaluated from input data and/or from
central program information according to the platform orientation scheme
selected (see Paragraph 3.2.6). Equation (3.100) is repeates here for con-
venience.
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XP al1 a2  a3 X

- bl b2  b 3  Y(3.100)

z C,Zp Q C2  c3

The transformation from inertial coordinates to body coordinates was derived
in Paragraph 3.1.3 and the direction cosineu in this transformation are cal-
culated in the central program as follows:

X I1 ml nI x

Y 12 m2 n2 y (3.109)

Z 13 m3  n3  z

Equations (3.100) and (3.109) may be combined according to the laws of
matrix multiplication to give

Xp I al a2  a3 Ii m1  nl (11

Yp = bl b 2  b 3  12 F12  n 2  y

IZ Cl c2 93 13 m3  n 3  z

Since the product of the natrices in Equation (3.110) are the direction
cooincu relating platform and body coordan-tes, t.}i p rroduct Js the required
set of d-e-f direction cosines, and

dl e. f (a~ll + ap1L2 + a-11-) (alml + a2 m2 + ajm3) (aln1 + a~n2 + 83n3)

d2  e 2  f 2 = (bil.l + b212 + b3 13 ) (blml 4 b2m2 + b3 m3 ) (bljl + b2 u2 + b3 n 3 )

(d3 e3  f 3  (clll + c212 + c3 13 ) (Iuml + c2m2 1 c3 m3 ) (ciil ÷ c~n 2 + N 3 n3 )

rinrctlons of the three angles of the yaw-pitch-roll sequence may be determined
by equating corrcsponding positions in the matrix on the right of Equation
(3.111) with the matrix of Equation (3.100). First equate the terms in the
31 position (third row, first column).

- Sin Op = clll + C212 + C 3 13

The pitch attitude of the missile with respect to the platform is then given by:

p= - Sin- (cllI + c212 + c 3 1 3 ) (3.112)

Equating the 11 and 21 positions in each matrix gives the following relationships.

Cos Op Sin *p = bll. + b212 + b3 1 3  (3.113)

Cos Op Cos /p - all, +8 a212 + a3 13  (3.114)
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Divi.ding Equatioa (3.113) by (3.n114) gives an expcepaion for th angle

-1an (b 1 11 + bolo + b3 .(3l)

\a1 1 1 + a2172 + a3 ] 3 )

Finally, the roll angle Op will be found from the 32 and 33 positions

Cos Op Sin Op = clml + c2m2 + c3m3  (3.116)

Cos Cos p = clnl + c2n2 + c3n3  (3.117)

Dividing Equation (3.116) by (3.117) provides an expression for the roll angle:

-1 Ten l ml + c~m2 + c3m3  (.18clnl + c202 + c3n3

This completes the aulution for the three anW,.es for the yaw-pitch-roll
sequence for a rotating-planet problem. The platform angles for the other two

sequences are found in a similar fashion and exe gIven as follows:

Pitch-YIav-Roll Sequence

# = Sin"1 (bllI + b212 + b3 13 ) (3.119)

Tan- (:clll + C212 + (3\-1)
S8.111 + a212 + a33 ( 0

Tn (bLnl * b2n2 + b3 n-)

blTn-L + b2½2 + b3 / (3.121)

Pit ch-Roll-Yaw Sequence

"= Sin-i -(bln1 + b2 n2 + b 3n3 ) (3.122)

O = Tan-I (alnl + a2n2 + a 3 n3 (pcl-l + c@n + c3n3)

= Tan- (bll+ b212 + b 3  13 (

P b _-•- 2-m +(3.12b)

3.2.6 Platform Orientation - For many problems, it is convenient to torque
the platform in some prescribed manner. The actual dynamics of platform stabil-
ization will not be considered in this problem, however, the platform can be
oriented in any prescribed fashion by adjusting the direction cosines relating
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[i ----- .1• the platform and inertial coordinates. These diaeaQD Qn i5• e_± nsf..
[7the Inerti~al angle Bp =Q - QL -wpt the platfbrm -geocentric. aiua4~

and the aximuth of the platform. Threc cases of platform orientation Will ntw
be considered.

Case I Platform Inertially Fixed The platform may be fixed Inertially at
Sany desired orientation by uing the appropriate amles, Bp, OLp, and A in the

evaluation of the a-b-c direction cosines relating platform and inertial coor-
dinates. The usual procedire could also be aligned by a stellar fix. In this
instance, B = 0, e geodetic latitude of the launch site, and A is the
desired azimuth. These values are constants during the flight since the

- platform is fixed inertially.

Case II Platform Toraued at Constwit Rate About the Polar Axis - The constant
angular rate selected for this application is usually the angular rotational

rate of the planet in question. The platform coordinates now become a tangent
plane fixed to the planet at a point which is usually the launch site. Then
the angle Bp = -wt, OL is the geodetic latitude of the lniunch site und A
ic the desired azimuth.

C.ase III Platform Aligned With the Local-Geocentric-Horizon Coordinates -
The platform is rotated so that Zp iv aligned geocentrically downward and the
X.-axis is pointing northward in i meridian plane. This orientation of the
platform coincides with the orientation of local-geocentric-horizon coordinates.
The direction cosines relating the local-geocentric-horizon coordinates and
inertial coordinates are continuously evaluated in the central program and may
be used as the direction cosines relating Lhe platform and inertial coordinates
for thisz c f ,ly- t÷r-•

a1I a2  a31 i

bl b2 b3 = 1 J2 k2 (3.125)

" C2  3 J3  k3

These three cases are among the ones most frequently used. Additional
methods of platform orientation may be simulated by following the procedures
used in developing these three cases.

3.2.7 Platform Coordinate Transformations - Reduced Degrees of Freedom -
When an autopilot is used to control the flight of a vehicle which is con-
strained -to motion in reduced degrees of freedom, the platform motiun has a
similar constraint applied to its The coordinate transformations required to
relate the platform to the body axes are simplified for the same reasons the
transformations of Paragraph 3.1.7 are reduced. Of the reduced-degree-of-freedom
options available, the three-degree-of-freedom longitudinal option is best
suited to the use of a platform in conjinotion with the autopilot. The
platform transformations whinh follow are applicable to this option. Mhe
platform coordinate system will be defined as the Xp-Zp axis for the three-
degree longitudinal problem; three possibilities are considered for the
rotating-planet problem in the equatorial plane.
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Figure 3.17 P1latformi Coordinate
System Trif-r-t ally In-t9 - Launch Site

The platform axes are situated in hthe position of* -the Y9gZ, coordinate system
at t =: . (see Figure (3.4), Paragraph (3.1,.8))- The angie of the body axes
with the p.Latform axes is SOO0 + therefore:

0. t.r (4.126)

YP

2. Pl~atr'orm torquect at th lq~ rotational- eate.

Equator
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Figure 3-18 Platform Coordinate
system nrorqedatl a.. -Co.st aunth Rate÷



From Figur'c (3.17) for eastward flight Op 900 + wpt+ +1. Similarly, for
westward flight Qp = 900 - wpt + 0..

The appropriate sign is inserted by using the factor K3:

op 9oo+Kcr Wpt + (3127)

3. Platform torqued to local-geocentric - In this case local-geocentric
coordinates Yg-Zg are identical to platform coordinates Yp-Zp so the platform
angle is the angle with the local-geocentric horizon, 0, given by Equation
(3.55), Paragraph (3.1.8),

0 = Op 90 0 - K, 1 .+o (3.128)

I For a three-degree Longitudinal flat-planet problem with the platform coor-
dinates coinciding with the flat-planet coordinates, the platform angle is the
ae as the pitch t....t.lude, Q, with the flat-planet (inertial) coordinates,

so that:

=p- 0 (3.129)

The computations required to determine the platform angle for the three-degree-
of-freedom, longitudinal, equatorial-plane option are summarized in Figure (3.19).

(a) EqUATORIAL PLANE

HOW IS PLATFORM ALIGNED

INFRTIALLY TORU-ED ABOUTORQUED TO
FIXD POLAR AXIS LOCAL

- ____- - JGEOCENTRIC

i ~1 ,

0 0
J1Zo +0 Fj 99 0 +Ka w pt +0 P

CONTINUE PROBLEM

(b) FLAT PLANET

p

CONTINUE PROBLEM

Figure 3.19 Functional Flow Diagram-Platform

Angle for Three-Degree-of-Freedom Longitudinal Computation
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3..8 A ccelerometer Ladications - Let X be t- e vector eli Of:the 'gatform
_____t _______ A etevctrri fthe _P1amt.o

accelerometer outputs anu' be the nians atLraotive acaele-ration of:the ipianet.
WE The accelerometers are calibrated to read zero when they arc unaccelerated

and aligned such that the sensitive axis is perpendicular to g. The Vector
__ will represent the displacement of the Ratýform witt respect to the center of

the planet. It will be shown that A = R - g where R is the inertial accelera-
E tion of the platform. Consider the vehicle accelerating vertically at lg with

__ respect to a spherical body. In local-geocentric-horizon components then

R = -g 1Zg (310

In the absence of a gravitational field, the R
accelerometer should read -1g. Positive
motion of the accelerometer mass along the
Zg axis represents a negative acceleration
in this case, and the vector g is equal to
g lz . Cors ideration of the gravitational
field will cause an additional displacement 0
of the accelerometer mass in the positive /
Zg direction giving a total indication of -2g
-Pg. The equation

'R -g (3.-131)

will be evaluated from the data

DR : Ig lzS

so that Figure 3.20 Accelerometer WiLh
Sensitive Axis Aligned With

A= - 2g TZg (3.132) Local-Geocentrin Vertical

This result is shown schematiually in Flgure (3.20).

The vector W is equal to the vector sum of the accelerations producod by
the externally applied forces. The body components of the externally applied
forces may be taken from the separate subprogram which gives the summation of
forces and moments. Fx, Fv, and FZ arc the body components of the external
forces plus the weight. T~e weight must then be subtracted to determine the
body components of A:

A ý R - g ix + (F1FYzY)T + (3.1.33)

The body components of the vector W will now be resolved to platform coor-
dinate components; these platform components will then represent the accelero-,
meter outputs. Thi3 reaclution utilizeu the direction cosine matrix of Equ~atilon
(3.110) which relates these two coordinate systems, thus
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Av~ al a2 a.3  1

i iAyq b.1 b2  b3  j12 m2 n2 - 9' gy

EAz c2 c3  13 m3 n3 3z

where Axp, Ayp, and AZp represent the output of accelerometers whose sensitive
axes are aligned along the three platform coordinate axes.

3.3 Auxiliary Transformations - The computer program developed in the
Six-Degree-of-.Freedom Flight-Path Study is a generalized program capable of
calculating the motion of various hypes of flight vehicles. To define completely
the various trajectories which may be analyzed requires the computation of a
wide variety of flight parameters. It is evident, however, that for many
analyses the computation of the entire library of these parameters is unnecessary.
It is the purpose of the present discussion to specify and derive the special
relations and transformations for those auxiliary parameters which, in the
interest of program simplification, may be deleted from the computation if the
parameter is not required. The coordinate transformations and auxiliary para-
meters discussed in the present analysis may be generally considered as
Category (3) transformations, as defined at the beginning of Section 3. Under
certain conditions, however, the transformations may be equally pertinent to
other categories. (For examplo,a. and p may be isequired to compute aerodynamie
forces related to Category (1) as well as being used for tne convenience of
the analysts in readout, Category (3)).

3.3.1 Anlular Rates - In most cases, machine differentiation is accurate
eiuuugh to determine the timc dcrivative of a function. For this reason; the
angular rates of angle of attack, side slip, elevation flight-path and azimuth
angle are obtained by this manner in the present formulation of Lhe Six-Degree-
of-Freedom Flight-Path Study computer program. In some cases, however, it
may be desirable to have analytical expressions for these angcla3r )fates. For
this reason, the following paragraphs will present a derivation of expressions
for the time rates of change of the vertical and horizontal flight-path angles,
7 and a, and of the aerodynamic angle of attack and sideslip. The basic
definitions of these parameters are given in Section 3.1.

(a) Dcrivation of time rate of chage of flight-path anglee,..L

The elevation flight-path angle is defined as

Sink-1 (i (3.135)

Differentlat ing

I 1Vg(-Zg) -(Z Ve)v)2 J (3.136)
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The surface-referenced speed is

S=#•2 2g •2
* g + 4- (3..137)

9 g

from which is obtained the derivative

g-*- + + **

09= = (3.138)

+ "2 "+ j2Vg

SSubstituting Equation (3.138) into Equation (3.136) gives

,g + Zg~g) -Vg

(3-139)

(b) Derivation of time rate of change of head-Mg anglc,

The horizontal flight-path angle is defined by

0 - (3.1 ho)
72 .

Differcentiating with respect, to Lime, and rearranging the product of fractions
which .Is obtained, resu&ti in

Y gXg + i 2) vx-+

Relations for the quantities Xa, Yg, Z., and Vg, which appear in the 7- and
r- equations, are derived in Seection 3.1, Equaýtio.A (3.29). Also appearing
in the 7- and 6-equations are the quantities Xg, Yg, snd Zg, for which expres-
sions are derived as follows:

Let 'R be the displacement vector of the vehicle from the center of the planet,
see Figure (3.1). In inertial coordinates

N :Cx + yfy + riv ,,o
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n d in local-geocentric coordinaten

S'The velocity of the body is

W)= I PX a (3.14J4)

where 5R/6t is the derivative of R with respect to the moving coordinate
system Xg-Yg-Zg. The acceleration, which is ultimately required, is

J9

a- = j- M + Z x-)

In terms of the local-geocentric coordinate system, the velocity and accelera-
tion contributions are

XglX +Ygy + Zg1Z (.17

, • = +Ygig (3.146)

S~and

The cross products require Beverai vector iijuaipulaLiuxai to obtain cxprczzions
in a usnble form. The acceleration of Equation (3.145) to more conventionally
r!itten

a g + 4W (3.14i8)

since the time rate of change of the planet's rotational velocity may be
taken as zero.

The rotational rate of the planet is

in inertial coordinaten but may be expressed more conveniently in teriw of th-e
local-geocentric coordinates for the present derivation by

" "P = "AglXg + WzglZg (3.149)

vhere, from Figure (3.1)

WXg = W p COs OL

=g p Sin L
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.None of Uhe planet 's rotational rate appears in the Yg axis since w and
- .yLg are parpeandcul•r vectors. Me Coriolis acceleration, 2 jip X

_ixg Iyg lzg

Op x . 2- 0 (4 ~ 2 ~(igw, )Tx + (Wz~gg- L(A3Xg)TYg

Xg Yg Zg + (3.150)

The centripetal acceleration u x x is similarly obtained using
Eauations (3.143) and (3.149 5 , ?o be P

x (Zx x _).(wx8 LtlZg R)3fXg + (wX2 R)YZg (3.151)

9iibstituting Equations (3.147), (3.150), and (3.151) into Equation (3.148)
and collecting like terms gives g

a ~g Y~Z -1 ggg2 (3.152)
S+[Zg + 2fWg+ L +2X ~ ~ 1

+ [ Z' 2f x, + w X wR ] YZg

Tlhe acceleration, in inertial coordinates, is

a "l + X +YTy + Z*61- (3-153))

Eiuations (3, 152) and (3.153) ere equal, and h- means of Lht di±uction cosine
matrix relulbng inertia. unit vectors to local-geocentric unit vectors,
Ekquation (3.15), Section (3.1), the c•oversion is

+ 'tgoy IR il J1  k31  X

Rinrce X , Yg, and Zgare the required quantities, the components of Coriolis
and centripeta]. accelerations must be subtracted: The inertial components of
acc.... t•ot moy be qa] c~ulated by thae direction-cosine matrix r-elating bo--
coordinate unit yectors to inertial-coordinate unit vectors, Equation (3.1 ),
Section (3.1) :(6)

iK mI n1 FyY R = m n (3.1551

h F fy, n u J3

i(6)Noe tha FY,, , and Fz inlue the reurdqatteight components of t Ceveicle.

an cn~rietl celraios uc b ubrate: heinria cmpnetso



S(c) Derivation of the time rate of change of angle of attack,

II The angle of attack is defined by

u U'• ( = Tn'l Ww(3.156)

R2j_ Taking the derivative of Equation (3.156) gives the required solution for &;

(u - uw)(ýW -, ) - (V - ww)(A - W) (3.157)

(u-uw) 2 +(w-ww) 2

(d) Derivation of the time rate of change of sideslip angle,_

The angle of sideslip is defined by

Tan- (3.158)

Taking the derivative of Equation (3.158) gives the required solution for •;

(u - u)(. - ) - (v -v")( -l ()

(u - u)2 + (v - vw) 2

The quantities u., V , ww which appear in the & and 1 equations, have been
defined by Equation 73.33) of Section (3.1). The quantities, A, v, *) u, v
alnd w are obtained by the solution of the equations of motion. Relations for
the quantities ulf, vw, and Ww are obtained as follows:

Wind velocities are normally given in local-geocentric coordinates. The trans-
formation of these data to body coordInkxteu is made through the inertial
coordinate system. The required direction cosine matrices are

Ix TX l 1-2 1, TxJ

YY = J1 J2 J3 -yg

kZ kl k2  k3  lZg

and

j-x' i 12 13 ix

y= mi m2  3 ly

Tz ni n2 n3 1z
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~nY~i~ oxioz ui~a in B 3 1aJt) nn (3.154) ha above ~If tim
Xte or elnn.ee or Vehicole Valoc1,by du to Oande in wind VaJlouity ael;

SUW 1a 13 iI 12 13 x-O E WZr-4 wgR
10. T0 In lJ 3 Y, Wgvxzw .io

Ww/ n n2 n3l kl • 7Ag• + zXgw + 4 Rw ~k 913 j

The methods by whieh Lhe acceleration components of the wind velocity are
obtained derende upon the manner in which wind data have boon incorporated
into the problem. In general form, the derivatives are:

dg fj~gw 9W + X,, +h ax&gw 4L + dOLxw = W 7tw + - Ti + Z dt oQL dt

d 6ýgw °Ygw dh 6Ysgw dOL d Ygw dQL (3.161)
~(Y7 - - + W d T F~ + ( *ai~*)w dtgw = t -"ha+ h Ft-7L d it-

When the wind data are incorporated into the problem by carve-read techniques,
thr- total derivative is obtained by machine differentiation.

3.3,2 Inertial Components of Planet Referenced Velocity (Point-Mass
Problem)- In the point-mass problem, the planet-referenced velocitles.'"e, YnA
Und Ze artt normally calculated. However, the inertial velocittes X, Y, and Z
may be requirud ror reference purposes or to provide initial conditions for
interplanetary trajectory computations. The transformation between inertial
velocities and planet-referunced velocitita is derivcd as follows:

NP

V R- -i-.p -.

I //

Y OIL

Ye e

X X quator/

Figure 3.21 Inertial and Earth-
Referenced Coordinate Systems
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XLet R be the displacement of the point-mass, (see Figure (3.21)).

In inertial coordinates

5 I : ji x + rE L; :iz (3.162)

"V-R l + ely (+. 163)

In a lanet-referenced orordrnates

i = Xxe + 1 e + Z e'ze
Tlowever, due to the rotation of the Xe, Ye, Ze coordinate system, the vel-ocity-
is

V = R 0 + o x R (3.164)

where

The plaret's rotation is abobt the Z-axis which is also the Ze-axis. Therefore

• -- -W•z ý -Ipze

and the reqluered cro dss product itr:

IX e 1Ye lZ e

W1, xR 0 00.166

Xe Ye Ze

Substituting EquuLions_ C3.163), (3.-6r-), tnd (3.1.66) into Ectuation (3.A0JO

XI-X + Yl-y + Z1-Z = (Xe + wpYe)1X,, + (Ye - WpXe)iYYe + (iejiZe (3.167)

The relation between the unit vectors in the inertial system and unit vectors
in the. planet referenced system are obtained by a single rotation about the
Z-axis.

IL- -i ,. s :.a-I & 17" I Co op.
TZ & p ye =Sin w Dt Cos Wpit 0 l y (3.168\)

Tye.• Wo )1, X o !Ze 0,o
IX
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The transformation from planet-referenced velocities to inertial velocities
is made with the inverse of the matrix or Equation (3.168) and the component
relations derived in Equation (3.167).iIIF

X Cos "'t Sin Wpt 0 Xe W'p'~e

1-Sin w Cos pt e wp- e (3ol69)

10 0 1 Ze

The components of inertial velocities are used to calculate the speed of the
body as:

S= -- j+ 2 + j2 (3.170)

Equation (3.170) is valid regardless of the initial coordinate system involved.

3.4 Interplanet-ry Trajectory Problem Coordinate Transformations - The
Six..Dcgrec=of-Freedom Flight-Path Study compuber program may be used to compute
the injection conditions for vehicles embarking on deep-space journeys from a
planet; and may also be used to compute the terminal trajectory of vehicles
approaching a planet from such journeys. Since the Six-Degree-of-Freedom
Flight-Path Study pomputer program considers the actual volume and gravitational
effects of a planet's oblateness, as well as the atmosphere, this program is
suited to the de ailed computation of the motion of a space vehicle in the
proximity of a planet. Use of this program would be costly from the stand-
point of machine end analyst time, however, and a reduced-degrees-of-freedom
point-mass problem formulation which accounts for the position of the planets
and the resulting strength and direction of the gravitaLional. field at the
location of the vehicle would be more useful. The following paragraphs explain
the coordinate systems convenient to such a problem tand derive the coordinate
tr'ansformations required for the transition. It should be noted that the
coordinate transformations presented in the following paragraphs are per.formed
only once in the cutpuLativa of a trajectory using the Six-Degree-of.-Freedom
Flight-Path Study computer program, whereas the transformations presented in
the preceding paragraphs of Section 3 are required at every time step.

3.4.1 The Coordinates of the Interplanetary Trajectory Problem -• The
Coordiriate syatem. nor-mally adopted fur the iinterplanetery trnje etory problem is
a heliocentric, equatorial, Cartesian axis system based upon the Earth's
equatorial plane and the mean vernal equinox of reference date in ephemeris
time. This system will be called the T-A-P coordinate system for the Six-
Degree-of-Freedom Flight-Path Study. The T- and A-axis are in the equatorial
plane of reference date, ephemeris time, with T pointing to the mean vernal
equinox of this date. The P axis is perpendicular to the plane of the T- A
and is �~tpu ,ve ;ownard the north nle nof the Earth. The position of the planets
is normally given in thi s coordinate system, and the position and velocity
of the vehicle will be conveniently calculated in this coordinate system
by an interplanetary trajectory computer program. The vehicle position and
velocity will be computed relative to the center of the sun. It is assumed
that the interplanetary program also has the capability of translating the
origin of the coordinate system from the center of the sun to the center of a
planet without distur'bing the angSular orientation of the axes in space. The



planetocentric-equatorial components of the planet-reference poeititn and
valocoity may then be comuted Inthe interplanctaryt• J rypbem.

3.4.2 The Inertial Coordinates of the Six-Deg-ree-of-Frei?6e&hiim - The.
__ X-Y-Z "inertial cuurdinates of the six-degree-of -freedom. problem have beena

defined In SectioA 3.1: The X-and Y-axis of this system are in the equatorial
plane of the planut with X inertially fixed to the meridian of the vehicle at
the time of problem initiation. When transferring from the interplanetary
trajectory problem to the six-degree problem, the X-axis will be determined
by the planet meridian of the vehicle at the time of transfer. The Z-axis
is aligned with the polar axis of the planet and is positive towards the south
"pole.

3.4-3 Astronomical Angles Required for the Coordinate Transformation -
A convenient derivation of the direction cosines relating the X-Y-Z and T -A - r
coordi-ate systems may be made using the right ascension (ONN) and decliatidn
(5N%) of the planet's north polar axis with respect to the T-A -I' coordinate
system of Lhe 'efleence date. The right ascension and declination of the
north pole of several of the planets may be found on Pages 521 and 522 of the
1.960 American Ephermeris and Nautical Almanac (Refednace (10)). The two
rotations through CN and 6N define the equatorial plane of the planet; one
uore rotation, the hour angle, is necessary to orient the X-axis of the
Six-Degree-of-Freedom problem. This procedure may be used for transferring
c, .ther to or from the Six-Degree-of-Freedom Flight-Path Study computer program,

3,4..4 Transformation From Interplanetary to t.ie Six-Degree-of-Freedom
In.erial Coordinate System - The information required to evaluate the direc-
tion cosince in this coordinate transformation are:

1. The right ascension and declination of the north polar axis of the
planct in question.

2. Position components in the mean-equinox-of-reference-date coordinate
sytm itn at th. . center of the sub~ect planet.

The requir-d direction cosines will bc determined by the multiplication
of the transformation matrices of each individual rotation required to align the
two coordinate systems according to the method- of Reference (9). The sequence
of rotations is given by: (See Figure (3.22)).

Iy = 1800 XN 9QO0"b C A (3.171)

.lz X -Z A r II
J. equutoriaj plane of the planet is defined by the coordinate sy.3teru

A-B-(-Z) which is obtained by rotating through aN and (90 0 -6N). The Y-axis
will be located in this plane by the meridian of the vehicle at the time of
transfer. The angle XN specifies the hour angle of the meridian of the vehicle
with reference to A and may be determined from vehicle position components,
as noted in the next paragraph.
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FIGURE 3.22 A UNIT SPHERE SHOWING TRANSFORMATION
FROM AN INTERPLANETARY TRAJECTORY PROBLEM TO THE

SIX-DEGREE-OF-FREEDOM PROBLEM INERTIAL COORDINATES

69



The direction cosines of the transformation will be obtained by writing
Equation (3171) in terms of the individual transformations as follows,.

- x 1 0 0o o Coo N Sin .N 0 Sin 5N 0 -Co. rto Cos n a

-3. 0 0 0 0 1 1
0. o o 11.S, o 0 Cos ON 0 Sin oON 0 o

Carrying out the indicated multiplication gives the required transformation,

T; Yx (Cos ½N Sin • Cos o• (Cos Xl Sin ON Sin aN (-Cos Xyq Coo eN) BT

'-Sill -N Sin CXN) 4Sin XI; CoS CIN)

I -f (Sin XN Sin ON Cos oi (Sin 4N Sin ON Sin % (-Cos BN Sin XN) TA

+Cos IN 8 NSina) -CoS XN Cos Cqi)

S(-Cos ON Co0n oN) (-Cos BN Sin ON) (-Sin 5N) Y r
(3.172)

Since the X-axis is established by the position of the vehicle at zero-time,
when the trsnsfer is made to the Six-Degrees-of-Freedom Flight-Path Study, the
Y component cf the transformation of Equation (3.172) must be

(Sin AN Sin N, CoG aN - Cos XlN Sin a,)T + (Sin %N Sin 5N Sin CG - Cos %N Cos CXN)A

- (Coi &l Sin X)I ' ,0

which, solved ro r X; ei.ve•

=aCs _M - T Sin OR _ -
TCos =q Sin [ + A Sin aN Sin - Cos bN (3173)

3.4.i5 Trnnoformation From the Six-Degtee-of-Freedom to Interplanetar
Coordinates - The direution cosines derived in this section are applicable I hen
transferring the computations from the six-dcgree-of-freedom problem to an
interplanetary trajectory problem. The final angle (%N) in the sequence of
rotations discussed in Section 3.4.4 was dct<::ilncd from owledge of the
vehicle position in the mean-equinox-of-r.ference-date coordinate system.
Since these position components are not Iciown when transferring from the six-
dcgree-of-freedom problem to an interplanetary problem, another method of
determining XN must be used. Since the right ascension of the iiu'th-polar
axis of the planet establishes the line of intersection of the planet's
equatorial plane and the Earth equatorial plane of date, the hour angle of
the launch site at the time of laauch with this datam ib required. Unfor-
tunately, planet hour angles are not usually referenced to this point; however,
the angle XN may be evaluated from the planet hour angle of the vernal equinox
with the planet meridian of the launch point at the time of launch. From
Figure (3.23), the required relationship is:
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= x N= "N + 900 (3-174)

where IN is the houir angle of the vernal eqatinox of date with the launch point
at the time of !aunet, and PN is the angle of the vernal equinox of date with
the intersection of planetIs equatorial plane and the Earth equatorial -leane
of the reference date.

The angle vN will be determined from the spherical triangle TCA (Figure
(3.23)). By the law of cosines for sides:

Cos • = Cos T• CoE (90 + cN) + Sin TC Sin (90 + aN) Cos N (3.175)

Several terms in the equation must be related to the known parameters aN
=nd EqN. The cosine of TiN may be found from the law of cosines for angles-

Cos CS C N = Co8.-5 Cos P (3.176)

From the law of sines:

Sin TO Cos 5N Co(' M (3.177)

The cosine of the arc T is also required ia Equation (3.175) and is easily
obtpined by the trigomometr!( itdentity.

2Coo TC 1 - Co3 6N Cos2 • (3.178)

Subztituting Elauntions (3.176), (3.177), 9nr (3.178) into Equation (3.175)
and solvinp for Cos v'N gives the relation:

Cos 14 = : (3.179)
1 - Cos 5H Co- -N/

The angle XN is thcn obtained from Equation (3.174):

( -Sinra, + 9 (3o8.
%W mN - ' + (3.1802

CO 3l " o N COS LxN

The angle XN completes the set of angles that will be used to rotate the
T- A - F coordinates into congruence with the X-Y-Z system. The transformation
matrix for each individual rotation will be determined and the required direc-
tion cosines will be obtained by multiplying these matrices.

II (3.181)

Y X I -Z A I r jyrI

This sequence of rotations is identical to the sequence in Section (3.4.4).
Therefore, the definitions of -the direction cosines used in Section (3.4.4)also
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may be used when transferring figow the six-dogree-of-freedom problem to an

interplanetary trajectory problem. The angle A-N is copIuOed.iA C:d LLbX
manner in each case, but this will not affect -he definitison of the Arecaion
cosines. The transformation from X-Y-Z to T - A - r coordinates is therefore

-- given by the inveree of Tquation (3.172).

tur I k- (Cos XSin Cos N (Sin XSin Coscq -Cos BN Cos aN IX
_ ,=-Sin XN Sin aN) +Co13 XN Sin aIN)

¼k (Cos XN Sin BN Sincxa (Sin XN Sin BN Sin qN -Cos BNSin aN fy

+Sin XN Cos all) -.Cos; XN Cos 4N)

- (-Cos XN Coas bf) (-Cos BN Sin X'N) -in 6 fz

(3.-182)
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___ 4. VEHICLE CHARACTERISTICS

ii The methods by which the aerodynamic, propulsive, and physicao-lharacteristics
W of a vehicle are intnoduced into the Six-Deg,,ree-of -Freedom Fligh;-Path IS udy dom-

purer program are proeentod in this section. The form and preparation of these
input data are discussed together with methods by which stages and staging may
be u'0ed to incrcazs th effective data storage area allotte, to a description
of the vehicle's properties.

4.1 Aerdynamic Coefficients

4.1.1 Form of Data Input - The primary objective of the aerodynamic data
input subprogram is to provide for a complete accounting of the various contri-

- butions to the aerodynamic forces and moments regardless of the flight conditions
or the vehicle being considered. Two powerful techniques are available for
usc in digital computer programs; (a) an n-dimensional table look-up and
interpolation and (b) an m-order polynomial function of n variaole• prepared
by "curve fit" techniques. In the first method, the proper value for'h term
is obtained by an interpolation in "n" dimensions where the number of dimensions
is taken to he the number of parameters to be varied independently plus the
dependent variable. This method has the advantage of accurately describing
even the most non-linear variations with a minimum of preparation effort. The
amount of storage space which must be allocated to such a method, however, can
achieve completely unreasonable proportions and may requireoubstantial com-
puting time for the interpolation as the number of dimensions is increa3eo.
The second method has essentially the opposite characteristics; that is, a
large amount of data mny be represented with Pi mwinmum nmon-nt nP storagrn
space and the computation time is held to reasonable limits but the data varia-
Lions which may be represented must be regular. A substantial amount of effort
is usually required for preparation of data by a curve-fit technique. Both
of these methods arc very convenient when the amount uf data to be handled iu
moderate, but tend to become unmanageable when large amounts of data are required.
This usually occurs when thu program, having several degrees of freedom, is
committed to une or the other of these two techniques. Therefore, the Six-
Degree-of-Freedom Flight-Path Study computer program will incorporate both of
the techniques discussed as a compromise to take advantage of the more desirable
feaLueewq ur both. To do this, a general set of data equations will be programmed
which define each of the aerodynamic forces or moments. In general, the co-

,ff iients for the.se euan. ins will be obtaincd from. a c.urve-read i .... pula Lia.
Sevu.r:il simplifications may be madc. to the equatioxns do-PeDding un the flight
condition and vehicle to be considered.

The effects of the following parameters will be considered:

(a) Angle of attack and its time derivative (a, •)

(b) Angle of sideslip and its time derivative (P, •)

(c) Roll, pitch, and yaw control deflections (6p, bq', r)

(d) Roll, pitch, and yaw angular rates (p, q, r)

(e) Mach number (MN)
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(f') Center-of-gravity position (xC.G.)

(g) Reference structural temperature (Tsref)

The aerodynamic forces and moments considered with x-spect to each coor-
dinate axis include the effects of angle of attack and sideslip, primary control
deflection with respect to each axis, lag of downwasbh and primary damping
effects. In addition, the ,rolling moment due to yaw rate is included, and
Magnus forces and moments are accounted for in one of the airframe options,
Complete generality in the aerodynamic coupling effects has not been included
in the present subprogram options since the descriptive terms required depend
upon the particular problem considered. fowever, the storage space provided
for the several existing options is considered to be adequate to accommodate
other special problem formulations through substitution of terms.

Quite often the particular application will not require some of the terms
listed in order to describe completely the flight path and vehicle under con-
sLderation. The subprogram will be arranged to that the computer will assign
a constant value to any curve for which the data has not been supplied. For
most curves, the constant value will be zero. This Le-ahniqut" will reduce sub;-
stantially the time required for the preparation of data. Values intermediate
to those introduced in a tabular listing will be obtained by linear interpolaz=
tion. The method of incorporating data for staged vehicle is discussed in
ParagraDh h.1.. The method of introducing thc offects of static aerothermo-
elasticity is outlined in Appendix Four.

)1.l.2 Flight Path and Vehicle Types - In most of the cases discussed
he low; n " curve-lit" *technique will be used to obtain all or a Dortion of the
aerody•".i,-., tc. For .- hc purpoocz of thiz subprogca,, iL wLll be assuimed
tiiat the cu'f:.- fiL haos beuer ucluuctd Lo rcprcscnt the variat ion of the coeffi-
cient about thc trim conditions. This may have the effect of removing physical
ingnificance from some of ,hth. indlivdual Lurijs.; and or .5I- '2 , 4.1- -

will represent the data. A typical example is indicated below.

4 Actual
-,,A Curve Fit

4A -N, Curve Fit

Trim

o Actual

Angle of Attack, a

Figure 4.1 Curve Fit Non-Linear
Aerodynamic Characteristic
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In this case, the CNo and CN• values used in the equation for CN are obviously

different from the actual values of these parameters.

A functional flow diagram for the solution of the aerodynamic forces and
mocmnts is presented in Figure (4.2). It should be noted that the actual
machine programming will not necessarily follow the sequence shown since
certain computer operations have been omitted in this description of the
problem formulation.

Airframe Option (1) Controlled Aircraft = A controlled aircraft repre-
sents the most general case that will be considered. In order to account for
the many component forces, it is necessary to make certain restricting assump-
tions. The assumptions will be made that the aircraft is confined to moderate
variations in position angles and control deflections. Varying Mach number,
center-of-gravity shift along the x-axis, and aerothermoelastic effects are
included. The coefficients can Uhen be expressed as shown in Block Number
(1-7) of Figure (4.2). The functional computation sequence for this option
proceeds from Block Number (1) to Blouk! Num.ber (1-7) in a straight-forward
manner.

In the axial force coefficient equation, there is a provision for includ-
ing the effects of variation in Reynolds number. This will be accomplished
by supplying CAO as a function of unit Reynolds number and Mach number. A
.c.hree-dimensional interpolation will be made to deteemine ti- vcluz ,.' t.e
in the equation.

The analyst will be provided the option of bypnning the aerothermo-
eia6[iu u1t-1tI~ns as indi+onted in Figure (4.2). The change in dynamic
derivatives due to a change nt. the center-of-gravity location is progrw•ui•,, az
a curve-read in order to avoid the complications of a transfer. It should be
noted that elther body-axis or wind-axis data can be supplied to these equations
as the provision will be made to rotate wind-axis djAta int-o bho ody axis.
The definttion of (Y and 0 as applied to the SDP computer program is noted to be

a i. Tan- - and 1 = Tan-! (V - vw)
\u -w uU " U,, (.1

DotA supplied must correspond to thIs definition or an alternate compuLation
of these angles must be formulated to agree with the method of data reduction.

Airframe Option (2) Point Mass - The consideration of the motion of a
mass greatly simplifies the equations for the aerodynamic coefficients as no
moments are considered. The additional restrictions that are imposed on this
routine Rre that the vehicle is confined to moderate variations in position
angles and control defleLctions. In addition, no conLic'eration of aerotherm-o-
elastic effects, dynamic effects, and center-of-gravity shifts will be made.
This reduces Lhe eq.aat.n. t+ the f.ori shown in Block Number (2-3) of Figure

The forces calculated in this case will be in the wind-axes system rather than
the body-axes system. This is in kceping with the solution of the equations
of motion as noted in Paragraph 2.4.
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Airframe Opti.on (3)Pitch-Up, Spin, and SimilAr Maneuvers of a Controlled
is normally restfioted to -particular conditions of vel6 eity &nd k_1X1tu-d-e•d:.L:.

Aerothermoelastic effbcts and center-of-gravity shifts will be neglece47ted
Since large angles of attack and sideslip are expected, a four-dimenSional table
look-up and interpolation of the coefficients as functicnr of angle of attack,
sideslip angle, and Mach number will be used. For this case, the parameters
(CA)5=0, (CN)6=o, (0y)5= 0 , (C 1 )&=O, (Cm)5=0 , and (Cn)5=o will be specified as
functi~ons of c, P, and MN. This allows the equations to be reduced to the form t'

indicated in Block Number (3-3) of Figure (4.2).

Airframe Option (4) Tumbling Re-entry Shapes - This option will have the
capability of accounting for the aerodynamic characteristics of a tumbling
re-entry shape that is rotationally symmetric about the longitudinal axis.
The Magnus forces and moments developed by a spinning motion about the longitud-
inal axes may be included. Restrictions on this case are: (a) no controls
are employed, (b) the center-of-gravity location is constant, and (c) aero-
thermoelastic effects are neglected. Each of the coefficients may then be
expressed as functions of the total angle of attack and Mach number. The
total. angle of attack is defined in the following matuer:

ot = Tan-1  w - Ww)2 + (v z VW)2'u (4.2)

(U- U')/

The aerodynamic coeffiients required to describe the forces and moments
on such a vehicle are libtud in Block Number (I-l) of Figure (4.P). A three-
dimunsional interpolation must be performed for each coefficient together
with a rotation of the coefficients through the angle OA to the body axes
sys.tem. The aerodynaoic roll angle, OA, is defined as:

W =Toi- (v-v\ (43)

4.1.3 Error Constants - The use of error constants, designated by the
symbhol, E, to modify the aerodynamic data characteristics is shown in Figure
(4.2). A detailed explanation of these error constants and their use i.s given
in Section 4.5.

4.2 ThrubL and Fuel "Low Data -- The techniq•,je to be employed in the
introduction of the thrust and fuel-flow data into the solutions of the equa-
tions of motion are developed in an approach -1 milar to that employed in
Paragraph 4.1, which considered aerodynamic data. An n-dimensional tabular
listing and interpolation technique is used, with the independent variables
being defined by the* type of propulsion, unit bein8 onosidercd. Equations are
developed to resolve the thrust forces into forces and moments in the vehicle
body-axes system. The provision to include error constants in the thrust and
fuel flow parameters is provided.

4.2.1 Data Inputs - The number of independent variables which affect
the thru.t and fuel flow is determined by the type of propulsion unit being
considered. For the present formulation, the propulsion units are grouped

78



into the f'ollowi~ng options: (1) noz-n-atro:Ia -thru~st rQc]~t.4 2) c~ontrolled--3
ýA O 3 w) nra 'ý.. -ftthrust rocket_; -and -(S-) air br~athin8 eiigines- ;Qpt re~an

command informhatio-n from an auto#ilot or- fisight 'plan prograwmer-ci~-i
presents a functional flow diagram for t%'O-e computation~ of<e-ach of these three

__ options for the case of a single nozzle (or propeller) engine. The data'Input
Alft. techniques, applicable to each option are outlined below.

__ RvlgJion Option (1) Non-Controlled-Thrust Rocket -The thrust of a
non-controlled-thrust rocket motor is assumed variable with time and altitude.L

* ~The altittude effect is determined by the excit area of the nozzle, Ae, and
the ambient pressure, P. If the thrust is specified -for some constant ambient

-air pressi ie, the altitude correctilon can be calculated within the subprogram.
In this subprogram, the vacuum -thrust) in pounds, will be introduced by a
tabular listing as a function of time, in seconds, and corrected as follows:

T =TVAC - PAe (4.4)

The propellant consumption rate will be specified by a tabular listing,
in sluas ' er second, as a function of time, in seconds. The vehicle mass
can then be determined from the intcgrated propellant consumption ratc and
lnYitlal ma_ýS.

4'YL = M:%- t *rt(f at

Note tiint (di qy /adt) - -9ff for this definition of mass.

Propulsion Option (21) Controltect-Thrust RockeL, - The ut eoiLillu d-thtcuat
rocikc't 2 i fcrosr from thc non-controlled in that -the Propellant flow rate and
the thrust at any given time and altitude may be- varied by the flight pro-
graminur or autopilot subprogramr, of the computer program. It will be necess-
Bry, therefore, to specify the vacuum thrust aa a function of propellant flow
rate. The propellant flow rate must bo obtained from an autopilot (or fligIht
programmer) signal. The flow-rate commanard will then be used in the tabu~lar
listing of vacuum thrustL. Morrection of' thicý to-not for altitude will lbe
made by usc of Equation (4.4). The vehicle mass, j.pr det"-rmiiuea from an int4e-
gration of the mass flow rate according to Equation (4-5).

Propulsion Option (3) Air Breathing Engines -An air-breathing engine
is stronglyr ýiffectýerlby the environmental conditions under which it is operating.
Engines which would be grouped in this classification rire turbojets, ramjets,
pulsejets, tur'boprops, and reciprocating machines. The parameters which will
be considered of consequence in this proGram are:

( a) A'-+.Lttude (h - ft)
(b) Mach number (MN)
(c) Angle of attack (a - degrees), and
(a) Throttle setting (N - units definud by problem).

Both the thrust and fuel flow are functions of these variables. In order
to accommodate these variables, a five-dimensional tabular listing and inter-
polation will be used to obtain both thrust and fuel flow. The thrust needs
no further correction as the effects of all parameters are included in the
interpolated value. Tne mass of the vehicle isdeu ~ ie fromEqtcn(.)
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I I_

The f inclonal, computation "aswce f•i; Iroduoivt_ thkese data is straight-
:crwiud L4 e outlined in Figure 02 .3), asto_;ýhowA in F.

| components. This,!o •mpkita`,s•:Wno mur.t "be performed for all jrqpulsion-opion, Em.d-

+i.in, therefore, associateda v-,*.IN the f ixed portion of the ýdiýýttak Iprbp•-ifi 3ath-er
"• ,I},.-!'n •:i,h ::x) tz-aust •.-Ifu.•l r-ow s-tbqrogran.- Tý-,: res~olution is shown in
,• Fig•-er t4.3), howecer., sl i%;e it is so closely associated with these forces.

•:. 4.2.2 Component Forces and Moments - All propulsion units are capable
•:• of introducing components of force and moment along each of the three coor-

II -dinates of theý vehicle body-axes system. These may be due to misslignmentc,
i --- position of installation, or vectoring of the thrust. A common method of
!1 control utilizes -the thrust force to produce control moments by swiveling the
| "• exit nozzle. Since the equations of motion are derived on the basis of motion

! ,.-in the vehicle body-axes system for all options except the point-mass, it is
- necessary to resolve the forces and moments in the proper axes system. De-
- fining the plane of swivel as a plane parallel to the x-axin and including the
S~thrust vector, let Oip be the angle of rotation of this plane from the x-y
Splane (y into z rotation is positive). Also let ).,T be the. angle between the

Sthrust vec~tor. and a line parallel to the x-axis in the plane of swivel
(0 < XT _< 900). Then

Tx -- T Cos XT

T = -'T Si qCos O 46
Tz = -T Sin _ _ _ _ Sin _T

wheina Tx, To , ant Tvi are thbd- eompon sytem of Thbrust in the veticle Doiy-nxets
. csostem. (Atpositive T producesc a positive .) These forces will intvroduce

{ moment-.,

M-p_ =-- " ý (zN• - m ._ ) - • (xN - A YC r.oC.) (4.7)

N T = T Y (x N &- C a . G. ) 2 - X ( Y - YC . U.

Wnere LT, 14T, and NT ire the thrust momentu t•oout the .... .•.-,i••• x, y, end• 7. bodvy
azexit n,:pozl-e. >• Sinc N, and zN are the distances of the point of swivel of
tr.. nozziLen Cou the rfe-arence center of gravity and e ct.t,.., sC.G., and tC.G.
represseary the shift ov the center of gravity from the reference location. D n
the Six-Dngree-of-Freedom w light-Path Stpadly computer program, consideration
of the movement of th cen ne: of gravotv will be confined to translation along
the x-axis .v bIt readucei the momelt elth aions to the following form.

LT = TzyN -ThyZN

IT = Tx•" Tz(xC -sC.G (4.8)

NTy= -TySiN ACOS T ii
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If more than one engine is used. or if a single engine with more than one exit
nozzle is used, then the sum of the individual forces and moments must be
obtained. In this case:

Tx = T + T + ..................... Tn
K xn

and similarly for Ty and Tz.

-T = LT LT2 +..................... + LTP

MT_ " MTI + MT2 + .................. . MTn .. 0)

I NT = NTI + NT +..................... + NTn

The functional flow diagram to incorporate a multiple engine configuration into
the Six-Degree-of-Freedom Flight-Path Study computer program is outlined in
Figure (4.4). However, the present subprogram will be limited tu accounting
for Pingle-en~gine, single-nozzle operation on'ly. More than one. engine can
be accounted for if the eont,.uned effects can be grouped into a single "effeat-
ive" engine. Reassembly of the program deck will be requirped for multiple

Siengine arrangements.

4.2.3 Error Constants - The use of error constants, designauted by the
synbol ci, to modify the thrust and fuel flow characteristics is shown in
Figures h.3 and 4.h. A detailed explanation of these error constants and
L,;Jhr usc i. givwn in Section 4.5.

4.3 Physical Characteristics - The methods to be tmu.Pluy~d for tho hitro-
duction oa vehicle physical cha-uacteristics into th- v,-lT)-gree-of-Freedom
Fli-ht oPath Study computer program are outlined in this section. A table
look-up and interpolation technique is used to determine thouse iatuj3
which qre variable. A provision is made for the introduction of urror conso;nntr
into several of the paramctbrc.

+.3.1 Categories of Physical CnaurazterisLicu - Physica! ch _ract.r[.-;Lici
ars I.'troduced into the computtor p.,cgram in Lw(, groups: (L) characteristics
used in the general solution of the equations of motion, and (b) characteris-
ti CL lased only ill 6pecific, or auxi-liary, s,,br-nm The paysical chaara--
;eristics used in the auxiliary subprograms (e.g. nose radius, wedge angle,

-kin thickness, skin density, and thermal conductivity used in the aerodynamic
heating subprogram, Section 7.) will be specified as input data along with
the introduction of the specific subprogram. The following items will be
defi ned in the general vehi .le characteristics subprogram:

(a) Initial riass of the vehici (-.no),

(b) Reference area (S),

(c) Reference lengths (di, d 2 ),

(a) Reference center-of-gravity location (xC.G.ref),

(e) Rotating marhinery pitch angle (0,),
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(f) Rotating machinery angular rate, (Wr),

(g) Rota~ting machinery moments of inertia (1xr, Iy~Ir~

(hi) vehicle center-of-gravity location (X.G)

__(i) Vehicle moments of inertia (17, X) ly) ,z Ixy' Iz, Iyz), and

(j) Reference jet-damping lengths (1y) Z, 11) Ini) II)

Items (a) through (g) will be constant throughout any stage. Items (h) through
(J) will be variable during the otage due to the variation in mass caused by
fuel consumption. Figure 4.5 prpsments a functional fluw diagram defining the
marnner in which these characteristics are introduced into the cuopLuLer progru~m.

)1.31.2 Re{ference Weigýht - The instantaneouis mass is used in the computa-
tion of Lhe body mfotion. The reference weight is obtained by:

4v.3.3 Error Constants- - The use of' error constantes, designated by the
symbol ci, to modify the general vehicle physical characteristics is shown

inFiue .. etiedeplanation. of these error constants and their use
is given in Section 4.5.

4.4 Etagcji 2nd Stag~in - A problem cormmon to missilei performance analyses,
and eýncountered 1'reqxtenilly ini airplone- pz~rforipnnc'e work, i~s that of stagingi or
Ur -~ Lh-'A-tc of 0 dLore te !,sse s,, f rom the coritinuing airf ramne. The ef f ect of,
0L,)i~oin'fl a boostov rociet. or fuel tanks is often great enough to requirQ Lht±L
the ~oimplete sot of aerodynamic data be changred. &SLa-o changcc; at Co.nW1ant
weight, sucli as oxt tunding IrriC braic~s or turning on afterburners, may also
require revisingr the aerodynawic or physical chiaracteristics of the vehicle.
Another use of the staging technique is *possible with the present computer
program which does not involve physical chiangee tU the configfuration; thiS
tec~hnique may be u:sed to revise the aerc~dynamic descriptors as a function of
acrodynumic attitude or Mach number. With this use of Uhu ;31age conlcept,
accurrate descriptions of the forces and moments acting upon vehicle may be
maintained over wide attitude rangeB if required. Other applications of this
stage Techrnique ure possible. N"ormally itI not practical to stop the com-
p*u:t&,~i aiiu manually insert a new set uf data. A bctter approach isto have
the computer do this automatically. The loading of new data will be done.
automatically by the computer on the basis of whether a specified variable
has exceeded or becomc less than a pre-selected value. For generality, it
is poss ible to test on four values in each direction.

When the new data are read in, the conditions representing the last time
step will be read in as initial conditions for the next stage. TPhis avoids.
t'-he dis conti nuit y that would result from an infinite rate of change of
center-of-gravity location. It also will cause the integration routine to
be started over which will reduce the computer-induced transients due to
staging.
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4_ t .5 Error Analyze• The Six.-Doeee-of-Preedom Flight-Path gtdy omputer
program will incorporate a provision for conveniently pderforminz 'light-path_error and dispersion analyses by trajectory computation. This Problem inv6emes

: •:the determination of flight-path dispersion due to deviations-0f-i~nput Van-a

& tities from their predicted nominal values. The usual approach to this type
cnf problem requires that a series of trajectories be computed in vrhich standard
cQeviations, or errors, are syitematically introduced for each parameter while
the remaining parameters arc held at their nominal values. These results are
then combined to determine the" probable" dispersion. This approach will be
implemented in the Six-Degree-of-Freedom Flight-Path Study computer program
by providing a simple and efficient method of introducing the deviations.
The capability of modifying a nominal value by either an error constant
multiplier or an additive error constant is provided for many of the parameters
as outlined below. The provision of these error constants will reduce sub-
stantially the number of tabular data listings that must be changed for an
error analysis, thereby reducing the work of the analyst. The determination
of the standard deviation of each of the parameters and the method of combining
the trajectory variations are left to the analyst in view of multiplicity of
comrbinat ions pussible..

4.5.1 Aerodynamic Data - The provision to modify the aerodynamic cr--
effi.ienLs through the use of error constants, £i, is ouLlined In Section 4.1.
The uontsqant. nro app] jed as follows:

ny = (cICN + F2 )q*S

a = (6 3CA + E)e*S

y (ý 5Cy + 6)s (4,12)

£ = (71+ £5 )q*s d2

n (ClCn + c 1 2 )qes d 2

Theue eiror constant.ý allow thia Loi-,tal •reodynamic coeffiilent to be modified
to account fur config.o•tion modification, experimental o-" analytical error,
or isaligneints.

11.5.2 Thrust and Fuel Flow Characteristics - The provision to modify the
thrust and mass characteristics, through the use of error constants, is out-
lined in Section 4.2. The constants are introduced es follows:

T c=3TVAC + £14 - PAe

rt (4.13)
= / 0 + C1 5  + to J "t dt

00 f

An error-cunaLant multiplier is not provided for the vehicle mass due to com-
plications discussed in Paragraph 4.5.5.
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4.5. 3 Vehicle slical Charaeteristlcs - The provision -to indify sofe 0?
the vehicle phiea h,-,raoteristýoa -tir-oug-h the- iise- 63r edr-r& 6n-stits~

outlined in Section 4.3. The constants are applied as fo!lowo:

XC.G. f(i) + e18

Sixx ýV'/I• + E19
1 + FJ9k•I• r (•n) +

.yy

Izz= f(-'I) + 621 (4.14)IIxy = (1n) + e22

Ixz = ') +23

Svz f(a'V7) + G24

4.5.4 Autopilot Functions - Error constants associated with an autopilot
will necessarily be definedby the choice of autopilot. Section 6 presents a
description of a typical control system which will be programmed for the Six-
Degree-of-Freedom Flight-Path Study computer program. Although the constants
are referred to as bias and drift constants, Lhey are, in effect, error constants
which serve to modify nominal values. These constants are applied in the

following way:

l•ins on Control Surffce Deflection and
Rate of Control Surfaceo Deflection

on = n + l4n

(4.15/
+ 6n

0 0

Bias and Drift on Attitudc Sensors

01,1 = Q + B-6 + BI.t

p,= rp + B1 8 + B1 9 t (1.16)

96, = + B12 + B1 3
opt: 1+•+ 3t

Bias on Rate Gyros

p' p + B20

q = q + B 2 1  (4.17)

r = r + B22
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in the piai f ro-con stants in the above equations, _oautIJL= must- be
exercised to i:1_iure that the units are consistent. Each of thd-Vr-r 66i stints
will be assigned a nomina1 value which will be used when nQ other vali~e is
ejecified. The constanLb whi.h are multipliers will have a nominal value of
unity, while those that are additive will have a nominal value of zero.

4.5.5 Additional Errors - Not all of the system input constants can be
modified for error analysis studies as indicated above. In certain cases, it
may be found unrealistic to modify the input data through the use of error
constants because the actual deviation would not appear as simply a constant
increment or percentage change. An example of such a case wuuld be the change

- in Lhrust-tima history of a rocket due to temperature changes of the propellant
since such a change affects, ..... thr-o.. lcvel and burxlng time. For an act'
representation of such a case, it would be necessary to modify the entire
tabular listing accordingly.

4.5.6 Atmospheric Density Error - An error constant has been incorporated
in the computation of the atmospheric density in Option 6 only. The constants
are applied as follows:

P - c25P+ C2 6 (4.18)
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5. VEHICLE ENVIRONMENT
SThe models for simuating the environnent .in which a veh q .et

are presented in this seotion. This environment includes the atmospheric wind,
and the gravity field conditions associated with the planet ovev- which the

vehicle is moving. The shape of the planet and the conversion from geodetic
* to geocentric latitudes are also considered. In the discussions which follow,

the descriptions of vehicle environment pertain to the planet Earth. File
WE environmental simulation may be extended to any planet by replacing appropriate

constants in the describing equations.

5.1 Atmospheres - The concept of a model atmosphere was introduced many
years ago, and over the years several models have been developed., Reference
(11) outlines the historical background of the gradual evolution of the ARDC
model. The original (1956) ARDC model has been revised to reflect the density
variation with altitude that was obtained from an analysis of artificial
satellite orbit data. This revision 1s the 1959 ARDC Model Atmosphere.

The advantage of a model atmosphere is that it provides a common reference
upon which performance calculations can be based. The model is not intended
to be the "final word" on the properties of the atmosphere for a particular
time and location. It must be realized that the properties of the atmosphere
are quite variable and are affected by many parameters other than altitude.
AL Lht present time, the "state-of-the-art" is not adwnced tc the point where
-these parameters can be accounted for and it may be several years before thc
effects of some parameters can be evaluated.

5.1.1 1959 ARDC Model Atmosphire - The 1959 ARDC Model Atmosphere is
specified in layer.s assuming either isothermal or linear temperature lapse-
rate sections. This construction makes it very convenient to incorporate
other atmospheres, either from specifications for design purposes or for
other planets. The relations which mathematically specify Whe 1959 ARDC Model
Atmosphere are as follows (Reference (12):

The 1959 ARDC Model Atmosphere is divided into 11 layers as noted in the table
be.LOW.

Layer Hb-Lower Altitude Upper Altitude
(Gpnpotent ial) (Geopotienti.)

Meters Meters

1 0 11,000
2 11,000 25,000
3 25,000 47,000
4 47,0oo 53,000
5 53,000 79,000
6 79,000 90,000
"" 90,000 105;000
8 105,000 160,000
9 160,000 170,000

10 170,000 200,000
11 200,000 700,000
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IMF.

For layers 1, 3:, 5j, 7, 8, go 10., and 11, a linear mole cu3-ar-soale temperatureSlapse-rate is assumed and the following equatibns are used: 7 -

GE J .048h
-f= r .0o8/ Meters (5.1)

j 7 TM (TM)b + K1 (lgp - Oboj

T TM A - B tan"I OR (5.3)

u L
p Pb [1+ K_(Ig go (.4

Il +K(Hp I~ (1+K2 ) Slugs/Ft.3 (5)

•:: ~~~ Pb ,,1 + Kl(,f• ,,, ]K ,•/•<) •

Vs 49.020576(TM)I12 Ft./See. (5.6)

0.0226988 x 1o [rrT%2.j t. 2/See. 5.7)

For the isoth. '-,rl layers 2, 4., and 6, the following changes ate made in the

P y ePiK3 (tIgp - tI,) (5.8)

. - c -<K3 (Ha, - Hi-) (ii. c)

Values of Uhe the iiOplrmrC, prýcsuce, A•-n•n•ty and aIjliude at the base of each
altitude. layer are listed below 111ong, with the appropriate va::lues of K_, K½,
and "3V,

Qu' a n t ily 1 - 3 II 5 6

K1  -. 225569-4 1338466-4 0 -. 159202-4 0

K -5.25612 - l. 3883 - -7.59218 -

K 3 .157689-3 - .120869-3 .206234-3

Tb 518.688 389.988 389.988 508.783 508.788 298.188

Pb 2116.21695 472.73 51.979 2.5155 1i.21381 2,108(72

Ob 2.37692-3 7 .0 6 2 0 -• .'.7650-5 2.8804-6 1.39468-6 4.i189-8

Hb 0 11000. 25000. 47000. 53000. 79000.
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A _ Quantity 7 8 9 10 ..

. .241458"4 .886289-4 .754341-5 .350715-5 .222129"5I-- K2  8,5h120 1i 70824 3.-41648 6.83296 9,76137

Tb 298.188 406.188 2386.188 2566.188 2836.188

Pb 2.1809-3 15562- 75578"6 5.39546 2.9759-6
SPb 4.261-9 2.2-2-10 1.845 -12 1. 338-1 11l3 -13

I Rb )0000. 10 5000. 160000. 170000. 200000.

Values of the appropriate constants to be applied in the temperature equation
(Equation (5.3)) are listed below.

Hgp(Km) A B C D

0-90 1. 0. - -

90-.180 .759511 .174164 220 25

1a3u-lVuu .935Y8Y .• •(j96 6  I 30 14o

5.1.2 Limitations - The validiLy uf hdie l998) ARIDC model. is Iiiijited to
altitudes below 700 km., although the program is arranged to extrapolate the
relationships to greater altitudes if desired. Extrapolation to greater
altituds is accomplished by altering the cutoff altitudc.

At an altitude of 90 km (approximately 300,000 rt.) Lhe subprogram nor-
Inally uuauei LU calculate kinemiratic viscosity and speed of sound and assihns a
value of zero to ench nf these parameters ss an indication thail. computration
has stopped. This is done for the following reasons: (a) the molecular coin-
],<siti~nl of the atousuhere is unknown. (b) the variation of the ratio of specific
heats above 90 km. is not kuowrl, and (c) the nuneriucal value of the speed of
sound has little physical significance. The validity of Sutherland's empiric4l
formula for viscosity is also reduced because of the extremely low pressures
which exist.

5.1.3 Accuracy - Due to a lack of knowledge of the counding-off proce-
dures used to evaluate the constants in Reference (11), it was impossible to
obtain exact agreement between the subprogram and the values tabulated in
Reference (11). A comparison of the resiltts over an altitude range of
0 - 1,000,UtO0 ft. revealed that the deviatiun of the computed from the reference
values never exceeded one tenth of one percent and in most cases was less than
one half of this value,
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5'2Winds Aloftý The winds -aloft SUbProgram Prvid'-s-for three qvrste
methods of inbtoducin -the- wiad eto- aa afnUno liudgf).f~o
Of range, and a fu•ction of time. This will faeai• te A- SO Mi I40
windeffects for the conventiona •er ormwuodlýV be'-• .
approximated by a series of straight line segmaets for ach. Of the methed•
mentioned abore. Statistically derived profiles of the ts a-
"Reference (13) can be represented by this approach and it is presumed that the
aiialyst will resort to sour-ces of this type to obtain the wind input data.
The present subprogram will not be particularly concerned with the method used
to determine the wind vector, as this is a separate problem outside the scope
of the Six-Degree-of-Freedom Flight.-Path Study computer program.

<* Four options will be used to define the wind vector in the SDF computer
program. The three components of the wind vector in a geodetic horizon eoor-
dinate system will be spccificd as tabular listings with linear interpolations
(curve reads) in the following options.

Wind Option (0) - In this option the wind vector is zero throughout theI problem. This will allow the analyst the option of evaluating performance
without the effects of wind. This option causes the winds-aloft subprogram
-to be bypassed in the computational sequence.

Wind Option (1) - In this option the components of the wind vector will
be specified as a function of time for the estimated cr'i3se altitude. Wind
speed will be specified in feet per second and time will be specified in
seconds.

Wind Option (2) - The Lle'e compononts of the wind vertnr will be intro-
dOacud as a function of s,1ititde in this option. Wind speed will be specified
in reet per second and altitude will be specified in feet.

Wind Otionp 3 - In this opti.on the components of the wind vector will

n,.,• •!s a f..l.On of range for tIhe estimated cruise altitude. Wind
speed will bo specified in feet pel kecrond and range will bh specified in
nautical miles. The range utilized in this computation will be the greuL-
circle range,

By staging of the wind option, it will be possible to switch from one
method of reading wind data to another during the computer run. Care must be
exercised in this oparLion, however, as the switching will introduce sharp-.
edged gusts if there are sizeable differences in the wind vector from one
option to another at the time of switching. This teffect should be avoided
except in cases where gust effects are being studied.

Figure (5.1) presents a functional flow diagram of the winds-aloft sub-
program. Note that the inertial components of the wind are not determined
in this subprogram. This wind, which is due to the rotation of the atmosphere
with the planet, is determined in the winds-aloft resolution. Only local-
geocentric components of wind, as noted by an observer at a fixed location,
are considered by the winds-aloft subprogram.
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Wind_ effeata_.wILIbea, -. laf~uation of the six-deigVa~o
-Pe~m he threea~s -of -~r ~tuda1-.r•e4Q lteral options. The reduced aegrees •f .r=,d:m_--L

-options will allow thie l ounnecessxy corponents- of- the wl1nd- vaetor.• _n .of uneces~sa oon%-.. A,: the .w--afi thet• ..

Since wind effects are not normally of interest lin-•h6:• •pit -x -•"!ori, ,n-e a
U winds-aloft subprogram will be bypassed autowatically when this option is

W selected,
5.3 Gravity - This section presents the equations necessary for the in-

S- troduetiun of the gravity components. into the equations of motion. These
components were determine-d by taking partial derivatives of the gravity potential

S7 equation. The potential equation adopted has been recommended f6r use ir- the
Six-Degree-of-Freedom Flight-rath Study computer program by AFCMC. Constants
for the potential equation were determfnied from References (.4), (15) and (16).

Spherical harmonics are normally used to define the gravity potential
field of the Earth, References (17) through (20). Each harmonic term in the
potential is due to a deviation of the potential from that of a uniform sphere.
in the present analysis the second-, third-, nr'n f-nurth-order terms are con-
sidered. The first-order term, which would account for the error introduced

* by assuming that the mass center of the Earth is at the origin of the geo-
centric coordinate system, is assumed to be zero. With this assumption

(R 2+'''+(R (5.10)

where I, I'3, ann' P), r're T.tginre finctions of geocentric latitude OL expressed as

P2  i-3 sin L

P3  - 3 sii iL - 5 sin OL (5.11)

P = 3 - 30 sin2 OL + 35 sin4 OL

"The gravitationol acceleration along any line is the partial derivative
of U along that line. At this point, it should be noted that the three
nnti !!,yiI v perpendicular directions in the spherical coordinate system !re
identical (other than sign) to those in the local-geocentric-horizon coordinate
system which is defined in Section 3.1.5. Therefore, the acceleration in the
OL direction is identical to %g and the acceleration in the R direction is
identical to -gz g* Or in the equation form:

CUR Re -3[ (3) 5 P3 +K (5.12)
\3

+ U + I_(Re + i Re) K(Re~
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_ .... j ;:jj. .• :• I• ~...

Coo OLe 15 " " . . .-cog. ' "

W% (-60 sin .cos 0 + 140.sin3  Lc

- =' Collecting terms:

I g6~ = cos +L ((L (5.14)
2In

vi. 2 e) 5"+ e-2 P7(515I ~ [...2~jP5 + F6A 3"~J 7

I where

IP 5  =sin OL COs OL

P6= cos ~~ (-5 sin2  L (5.16)

P1 - sin OL cos OL (-3 + 7 sin2 OL)

Equations (5.14) and (5.15) are used in the gravity subroutinci with the follow-
ing vulucs recommended for Lhu conbLauLb.

1= .h07698 x 1016 ft. 3 /sec. 2

Re -M 20,925,63". -t

J = 1623.41 x 10:6

H = 6.o4 x iO-6

K 6.37 x 10-6

It should be noted that these constants and equations pertain to the planet
Earth; however, it is possible to use these same equations for any other planet.
For this reason, the values of these constants will be programmed as an input
to the program so that the applicable constants may be inserted for the planet
under consideration. Due to limited knowledge of the gravitational fields
of other planets, it is probable that zero values would be assigned to some
of the harmonic coefficients when the program is used for entry studies on
other planets,

The above equations are applicable to a non-rotating planet as the centri-
fugal relieving effects caused by the planet's rotation are included in the
equations of motion. In addition, the effects of local anomalies must be
added if it is desired to make a weight-to-mass conversion based on a measured
We.i 9ht.
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5.4 Loca1-Geocent-ri-c t9-G _Qdt6!D Cg~rdaan~t§c 9 -~.zLWýw

whil -the motiono -tbe-body is go &.A~adL 47
-- .... ••independent of the surface. nTh the cent!1 prdgo i a li at-=gle 7

and the heading angle a are calculated with respect to the local-geocentric
coordinates. By definition 7 and cy are angles measured with respect,. to the
local geodetic. Although the maxi-mum. difference that can exist between the
two coordinate system is 11 minutes of arc, it may be aesirable to kaow 7 and

* - a more accurately than is obtained when measured from the local geocentric.

5.4.1 Latitude - It will be necessary to resolve the geocentric latitude
to geodetic latitude for an accurate determination of position. Figure (5.2)
presents the geometry required for describing the position of a point in a
meridian plane of an oblate spheroid.

P

:: ~~-Z / "

-z h..'/ /

IRp n

'g

0L C

Figure 5.2 PIanet-Oblateness Effect on Latitude and Altitude

It is apparent from this figure that the most significant difference between the
geocentric referenced position and the geodetic position is the distance AB
on the surface uf the reference spheroid. This distance can be defined by a
knowledge of the angle VL, the geocentric latitude; Vg, the geodetic latitude;
the corresponding radii; and the distance 00.

The relationship between the geocentric and geodetic latitude of a point on
thc surface of a planet which is an ublite spheroid is obtained as follows:
The equation for the surface in a meridian plane is

X2 Z2
R--e - + -- ,Rp_. (5-17)
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T tangent of the geodetic latitude can be found. by determining Aoiu nL LF ft-rea- of the pe a igout- t.9th)e elipse- -The s n7
V tangent is

STali 1g Re Z 5B

_ ~R 2 2B

* e•

S~~~~~~Tan •g e- L( 'o

I 'B

Note that ZB is a negative number in the p njrthern it po misphiere.

aThe tangent of the geocentric latitude aof point B is

hB-1•g = :o - l~ (.22

Substituting Equation (5.19) into Equation (5.18) gives 5he re inred relation

-5Tane m Tan7, (5.20)

u g

The expression for the radius ft r the planet at point B in terms of the -eocentri(
latitude of the point and the equatorial and polar radii is obtainef by the
rectangular to polar coordinate transformation

R013 (,'Os Ag (5.22)

and, solving for RA, by oubstituting, Equations (5,.21) and (5.22) iri~o Equation
(5-17), gives

Re Rp

"OLg V/Rp? Sine OL8 + Rl02 Cosr- OLg (5.23)

The distance R$ is determined in turms of ROL,, OL8 and -/ using the law of

3inLCG to be aL

Rog =RoLg (Sin OLg (5.24)
( Sin /

The distance TC is calculated by subtracting the projections on the X-axis
Of ROLg and Rog.

5Lg = O cos -R~ Cos 0 (5.25)

The point P repreoents the vehicle position for which it is desired to determine
the geodetic latitude, knowing the geocentric latitude and distance from the
center of the planet. Expressing the Cartesian coordinates of the vehicle in
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__ S terms of the geodet-ic.Ia~ttituf, altituade J110, anld the ehra1E±g±Lg
_ S nd M defined6 wth rru le relation betweenithe .gebbeiitr-ic 1"

a....geodetic latitude to be .

pp

-or-x

= --- (Rog + h) Sin g (5.26)
TanL h Cos Cos

IN L
S-• This equation, being transcendental, is inconvenient for the solution of

-. geodetic latitude when the geocentric latitude is known. Although solution
is possible, the complication involved would be uneconomical in view of the
fact that the calculation is a small correction to the working coordinxite,
the geocentric latitude. The solution is relatively simple when the geodetic
is taken as the independent variable. The results of such a computation are
presented in Figure (5.3) for the planet Earth where the maximum difference
betw',en the two latitudes is showr to be on the order of 11 minutes of arc at
the surface of the spheroid at 45 degrees latitude. This amounts to approxi-
mately 11 nautical miles error which should be accounted for. The results of
Figure (5.3) have been approximated by a curve fit of the form

• - •. =(Y 0 + -1LlIA , k2h? + k34L3) Bin A; (5.y)
hl

w-hore h* r 1,000,000

and k0  = a1.59)-137 Sec. or ho = .1931906 Deg.

k1] = -. 5h4061508 Sec./1't. a1  = -. 009010251 Deg./Ft.

ko = .020308362 Sec./Ft.2 k2 = .000338472 Deg./Ft.2

k3 -. 0003723074 Sec./Ft. 3  k 3 = -.0000062.179 Deg./t]3

The error incurred by the use of Equation (5.27) instead of tne exact solution
of Equation (5.26) is shown by the syfobols in Figure (5.3). 'T. maximum
error is on the order of .004 minute.) The solution has been extended to
20,000,000 feet altitude, or approximately one Earth's radius. This altitude
is sufficient for the problems to be considered by the SDF computer program
for the planet Earth. Greater altitudes than this must consider such other
effects as solar radiation pressures, planetary perturbations, and the effects
of the orbital properties of the planet and may, therefore, be handled by
other programs such as an interplanetary trajectory program discussed in
Section 8.
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5*9 btB4 Angleas -- Kniowing geodetic laititude ~ e~enW.

(he Or. - ri (_- -) -

-z-

(se Figure 5.04lto)f cdtcadGocnr. ~r

rllh trasforatin isgive by

X9 09O

As noed a Fiegute 11ax Rimum o d oferen d etieen teGeocentric at~)itue nd th

lTitue Thens o ma ll-anisgiven aprxiyin:svli

O)0Sin (Og - OL) X igrdas(.9

Coin (Oa -L 1L (5.30)
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and sutstituting Rquationa (5.29) and (5.30) into matrill (54) '.ive:

X g1 0 ( T)rsd. Zg

0 1 0(Y5.-31)
Ws-( 4- Irad. P )J9

The flight-path angle and heading angle corrected to the local-geodetic
latitude are computed by

7D Sin- -) Sinr l -_ _g -Xg(_ g -0_L) rad._ (5.32)

since the magnituae of vector Vg, is equal to the magnitude of vector Vg1 .

aid aD=Sin- Xg 2 Ya 1  Sin+ ) (5.33)

The angles 7 and c may be computed in local-geocentric coordinates by
Equations (3.69 and 3.70).

and

a Sin-i

or by setting (Og - •L) equal to zero in Equations (5.32) and (5.33).

5.4.3 Geodetic Altitude - The geodetic, or true altitude (h), will be
approximated by the altitude (h') by the relation (reference Figure (5.2)).

b 'Y h' = R-R$L (5.34)

The error incurred by this approximation has been investigated and determined
to be of the order of 1 - cos eg. Numerical evaluation of the error using the
relations of Equation (5.34) and the exact solution is summa•rizd below.
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- Eror (' -h)

-5OdO Ii
iO000

150,000 1
00 00oo 3

250,000 3
500,000 4

1,000,000 6
2,000,000 11
3,000,000 16
4,000,000 20
5,000,000 24

lu,000,000 39
20,000,000 59
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6.. AuO.PLoQT AM nIGHT-JIAN PRA-MR .

SThe autopilot and flight-plan programmer are m !chanii sms- A wr hich the 1 hh -cle
motion or trajectory are regulated or controlled. For use in the SDF computer
program, an autopilot is defined as that portion of the program which dater-
mines the vehicle control-surface or thrust vector deflections-, This definition
"applies for computation options which permit any combination of the rotational
degrees of freedom. This portion of the pr.ogram mayrange in sophistication

from simple curve-read functions of control surface deflection with time to
a linear-differential..equations simulation of a multiloop autopilot containing
corrective networks, servo systems, gyros, etc. which is commanded by steering
equations developed from an inertial navigation system. A flight-plan pro-
grammer is a device, similar in operation to an autopilot but restricted to
computation options which exclude the rotational degrees of freedom. This is
done because, for the most part, flight-plan programmers arbitrarily assign
rotational attitude.

6.1 Typical Autopilot - Since the autopilot for a particular vehicle is
a highly specialized device, formulation of a library of autopilot subprograms
will not be attempted. Rather, a typical vehicle autopilot is treated in the
following section which employs most of the elements normally used in this
device. This autopilot is considered as an example formulation to demonstrate
the techniques required in the digital simulation of autopilot networks in general.

.I. .1 D(SP.T rptiOn of PlAight Control System - The flight-control system
(See Figure (6.1)) to be programmed for the SDF computer pirogram has three
control channels: pitch attitude, azimuth attitude, and roll rate. The
pitch and azimuth qbtitudc ,;ontrol channels each contain inler and outer fced-
back loops. The inner attitude rate loop is used to improve the damping
churacteristics of' the missile and to provide dynamic stability. The body
angular rates, q and r, are sunsed by body-mounted rate .yros and are roll
resolved to obtain the pitch and azimuth attitude rates required in the inner
feedback loops of the pitch and azimuth control. channel s respectively. During
a certain portion of the fliuht, the inner feedback loop signal is obtained
by resolvilng 'the sum of corresponding components of the acceleration and
angular velocity measured by the rate gyros and body-mounted accelerometers.
lThe forward por-hinn of aeah !nner !nron contains a H.g (or lead, depending on
the constants used) network to improve dynamic stability and a notch filter
to attenuate the acroclastic oscillations sensed by the rate gyros. The
outer feedback signals of both the azimuth and pitch control channels are the
attitudes obtained from a servo repeater driven by the platform gimbals. The
yew-nnd pitch-attitude commands are wrua••ed with the appropriate repeater output.
The resultant error signal is multiplied by a constant gain to provide the
inner-loop rate command. The total pitch-attitude command is the sum of a
predetermined attitude program and the output of a pressure control loop.
The pressure control loop generates a pitch attitude error signal proportional
to the difference in the stagnation-pressure command and the measured stagna-
tion pressure. The effects of temperature limiting may be incorporated in a
manner analogous to the pressure control loop. A temperature control loop
has been devised which will determine the change in pitch and/or azimuth
attitude required to avoid a critical heating condition. The computation of
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ftand azimuth channels are presented to the appropriate pair of diametrically
ooed control surfaces. The output of the roll-control -annel is to each
of the four control surfaces. Opposing control sureacee Move as a unit for
-p:t ch and azimuth control and differentially for roll oontrol.

cono6.1.2 Control System Input Data Simulations - The flight data measured
by the gyros, repeatlesre, and aecelerometers must be calculated or obtained

OMOfrom other sections of the program. The functional block diagram (Figure
(6.1)) illustrates the sources of input data for the control system computer
psimlation. The steering functions provide the steering signals (commands)
for th 2 control system. For this particular application, the commfands are

ii~i determined from several two-dimensional curve read-out subroutines where timeis the independent variablend The steering functions must alao specify the
changes in computations corresponding to the position of the switches A-B-C-(.
These switches are used to modify the control system for various phases of
the flight, and the position ofrhe switches is dependent on, a time reference.

The platform portion of the fixed program computes the missile attitude
angles (hection 3.2) in a coordinate system representing a stable platform.
The platform gimbals for this application ore arranged in the yaw-pitch-roll
sequence and the plattorm will be aligned initially with the local geodetic
vertical. The platform will be inerd aprly grixel in its orientation at the

time of launch. (See Section 3.2 fc• . , C.•r"n-t- transformati o.)n

The rigid-body angular rates, p-q-r, i•.it would be measured by LhC body-
,tounted rate gyros, are calculated in the equations of motion. If the effect
o[' aeroelasticity on the control system is to be investigated, the appropriate

normal Lzed bending modes, damping ratios, and natural frequenclies must be
supplied to the aeroelastic computational block which in turn computes the
aurUoelastic body-bending ringular rates, rA and qA. These aeroelastie body
rates will then be summed with the cppropriate angular rates from thie rigid-
body equations of motion "to provide the rate gyro signals. Appendix Six
presents a method by which the aeroelastic body-bending rates may be simu-
lated by a second-order differential equation.

The indication of' two body-mounted accelerometers whose selmilive axe•
are aligned with the body y- and z-axes must also be determined for thi6
program. 'Tese accelerations may be taken directly from the summnation of
the forces and moments subprogram.

6.1.3 Pitch Control Channel - A stagnation-pressure command generated
in the stecrig functions tabulation will be compared with the pressure
behind a normal shock wnve (P2T), and the difference multiplied by the gain
factor KA: The gain, KA, is a predetermined function of time and is obtained
from a curve-read subroutine. Thus,

(P2TC - P2T) KA ý El (6.1)
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The total Dresaure. behind a- normal shock may be approximate d by the' relatign

error sign, j1 is modifi.ed by a compensation network c ta-
fer function is;

This transfer function is converted to differential equation form by the metbho'
outlined in Appendix Fi~ve; Transfer Function I'umber (3) of Table 5.1. The

are required for the digital simulation of the pressure loop compensation network.

+ Qr 1 (6.4)

Qr2 T3 + Qr2  =El

IThe. output of thie compensation network- is calculated by summingn functions

of Grl and Gr2  ~ ~

r 2-T I r 3 T r 2

* The pitch attitude of' the vehicle, (OP) with- rcspect Lo platform coordin-
B t~ c band rntepT-u ~rgai L mrly bi- dlesi-rable to invest-
fig'ate the vffuct of' drift on thex attitud~r oonzorz * This drift may be simulated
Iby :.-dding J316 + B1 7t to *the p~itch attitude, 111, calculated in thn -Platform

subprogram

0' Th±+ 1 + B1~7 L (6.6)

A pitch repeater is uswl to develop an electrical signal proportional to the
angular displacement ol' the pertinent gimbals. The transfer function repre-
senting this rereater is a second-order system; -the repeater output May be
obtained by solving the following differciitia" c-Taatlon, Transfer Fu~nction
Number (1) of Table 5.1,

Gm +2 w1 rl

The pitch-attitude command generated by the steering functions is summed
with -Or -@if, Rnd COT (QT is a temperature limiting attitude command, see
Section 6 .3) and the sum is multiplied by a constant gain KB. For switch Dl
in the clubed position

(Ge' + T - r -Qm)KB =E 2 (6.8)



Ir~prbdssvre control ts-iot requLired duhring 'a p ~artolVW-Th &fl'ra• qilm - o pen & that fo••o n t t e l g h . V r w t if opthat p-ou• o -on. . .
r Equation (6.7) reduces to,.

(9c@ + QT -Qm)KB = E2 (6.9)

The limiter may be represented by a simple logic element. If L1 is the
limiting value, the logical questions are:

SL1

IE2
L,•,. If E2 <Then Oe =E2(10

where the sign of limit must correspond to the sign of 6c.

The error signal E 3 depends upon the position of the switch A. If switch
A is closed,

S( 6  -6 H)K 0  = E3  (6.11)

and if switch A is open, the signal E3 is simply

6-0•K = E3 (6.12)

(The generation of the attitude rate, Og, is discussed in Paragraph 6.1.5.)

rlie sii,.al E- is ijiudi'iect by n simple lag (or lead) network. The equations
required to compute the oid-puL of this network are given in Appendix Five,T'r-ns~fer FunUclon Number ()

"Ts (r/I) +E - (6.1E)

The output of the lag network is directed Lu the notch Filter which may be used
to attenuate a certain auroelastic body-bendIng frequency band. The output of
this filter may be reoresented bv the differentia] oliiatinnn .n f Trnnsf'pr F•i-n•inr
Number (7) Table 5-]. The output, E5, is:

E5 = E+ ,E, (6.15)

where E4, and Ell, are determined from the solution of the following differential

equat .i >ns:

T16 E42 + E42 =E4 (6.16)
2
2I6 E41 + 2`16 E4q + E41 = E4 (6.17)
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1 6. L ..~. ~ (hax~el Thq wn of the azimuth control chenel.
-ae identlea-L--to-19Aiose of the -Pitch _Q0IxtgI_.C'aI'2 Jtle__ & ' i ~ -Vthat -the azimuth chan~nel oontains no pressure contxol Logp-# ýveq a US -a

* presenting the avdmuth cdfitrol channel are analogous to Equations (7.6A tbi~iiugh
(6.17) and are presented in a corresponding order below.

Rep~eate

W2 2~ (6.19)

Outer' Loop Suimmat ion

Limiter(v -)D6.0

if E1< IL2 1 ( Cos 9) E6  (6.21)

Thner~~.if -1E 6 1 > I1L21 Cos (,) = L lsd26~2.

(4Cor Q)w KE =EF7  Swi~eci A Open (6.22b)

Lagi Network

[ 1 (6.23)

Notch Filter

9 - 82 3

116 E 2 + 232 E6 (6. 24)

2+ En E8'
T16 E83 + 2"16 E03 03
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'Te roll attitude of the missile is-qui-a o til. body OQQ .1 ,
--- of 6anulAr' veloerty t~o pitch. a -a~z±gt~h ý%ttitude ra-ti s. _-The -~-roflZJ tfi

r S~~~~~Eimulated by the platform subprogram is modif'ied toinudeabsad a l't-

I .+ B +B (6.25)

This modiried roll attitude is converted to an electrical signal by an
* attitude repeater similar to the repeaters used in the pitch and yaw •h•arelp.

The output of the repeater is determined from the solution of the following
differential equation.

+ + =

The pitch and azimuth servo commands E5 and E9 are roll resolved to obtain
body components of the servo commands.

5qe E5 Cos ým + E9 Sin , (6.O7m)

5re P-9 Cos Vm - E5 Sin Om

6.1.5 Body An ates and Acceleratior3 - The body angular rates,
p, q, and r, sensed by the three body-mounted rate gyros, are calculated in
the equations of motion. A bias on the rate gyros will be included by adding
a constant to each of the calculated rates,

P, - p+ ]320

q' = q + B21  (6.28)

r' = r +B22

to simulate physical imperfections in the instrument. If the effect of aQro-
elasticity on the otability of' the control system is to be investigated, the
additional motion of a rate gyro due to body bending is computed in the aero-
elastic modificaticn operation and summed with the rigid-body rates calculated
in Equation (6.28) to simulate the total signal generated by the body rate
gyros, (q1 ' and rM').

If switch B is placed in the closed position, an additional signal is
summed with qm' and rm'. This signal is developed from the output of two
body-mounted accelerometers whose sensitive axes are aligned with the y- and
z-body axis. The y- and z-components of acceleration may be obtained from
the body components of the externally applied forces.

ay= X-

(6.29)

F - gz
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S.. .. . iiW . . . ... -• -- . . .. • - • . _ -,-~ .• • = - • . . • ".'

where and 3ard bd4''O - -MpQe n& S'f--the' bummLon- hiy
___ forces and the we±, o q i' Th tomeeý'i

Sin the true body componnts- of a •ezation, w•th a-t .erTs'N. .6Wi
describes the behavior of tho accelerometer. The error -s-ignal ElO is then
obtained by multiplying the accelerometer output by the constant gain KF.
The differential equations are

2• WP+ + EIO = IF az

7+ -- l---7--

(6.30)

For the switch B closed, the input to the resolver is:

cim = • - Elo ( 6 .31a)

rm = r El?

whereas if ovitch B is open:

%) 
(6.31b)

rm I

The resolutions of the body componenm ouC In(rei.l jxotation t3 a.titude
"rates would bu incehanized in Lhe actual coaio"l aycte'm by 0 roll resolver
and ia siinulatcd by

qn, Cos ý - r,,, Sin O(3 S(6-32

Cos C )• -- rm Cos 0" A m sin Om

These attitude rates are then summed with command signals in the pitch
and azimuth control channcls described in Paragraphs 6.1.3 and 6.1.4.

rJ .6 Roll Rate Channel - The rni 1 -rate command generated by the steer-
inr functions subprogram is upa LI •AL -d

in the equations of motion and biased according to Equation (6.27). A time-
varying gain, Kr, is developed by a two-dimensional curve-read subroutine.
The error signal, El2, is given by

E12  = (P, - P')KG (6.33)
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- ---,e frequency caracte istics of E2 are modifled by a rietwork in order
to-!_PrU'Te the- trqs nt re6e-eT- f Os4 d 1m.. • l-Q_ he jse1- £
work, 5p., is given by Transfe FAulction RNdfhei' (5) 3T- i b. 5-_,) as

6pe = A3 pcI + B3 5Pc 2 + C3 Bpc 3 . (6.34)

- where: 5PCl, 5c2, and 5pe, are determined by solving the following differen-

I tial equations.

"1j3 pci + bp E 1 2

'r46c + rDPc 2  E12  (6.35)

I Tj5 'P13- + 5~P'3  El-

and the coefficients are defined as:

I A = T. ll)(T13 - r2

1T13 - 'cl4)('cl3 - T15)

B3  = "l - l "•2) (6.36)

(l- ri )(Ti - Tip)

C 3  - - .-.
(3 3.(15 " 'rll)(•.5- j?)

6.1.7 Control-Surface Deflections - For switch C in the closed position.
the control-surface commands developed in the pitch, azimuth, and roll-rate
channels are summed to provide the control-deflection commands for tho four
Surfaces.

FDc 5qc + 5pc

=.. .. (6.37)

= -Bqc + 5pc

64c= -5rc + 'pc

The servo response will be represented by a first-order lag network, and
the actual control-surface deflections are given by the solution of the follow-
ing equations.

TiO in + 5n = 5nc

or (6.38)
in "n (n- Bn )

T 10

13.2



.here is a llmitQn the rate of control-surface deflection due to the physical
limitation-s ofwv the-Tntal 9.

nhe.e tdeuz flaections. n
on the rate of control-surface deflections, The effects deacri-ed .v .-
be simulated by the following equations.

6l n = [nc bnj +B4

if • < IL3 (6.39)

-- if 16j> IL31 6,t L3
,n_--3

where the sign of L3 corresponds to the sign of bn. The integration of the
four deflection rates defined in Equation (6.39), for n = 1,2,3,4 is performed
for each of the four control surfaces. These computed deflections must be
limited, since the actual missile oonttrol-surface has some maximum possible
displaccment, L4. There also may be a bias on the control-surface deflections
due to mechanical misalignment, 5no. The control-surface deflections are given
by the following equations.

t

F•,=5 dt +5n

if in,< LI n=5 (6.40)

The four control ourface

deflections calculated abovemust be resolved into the three -Control
effective control deflections r urae-•_''•_
Uq, and br. The deflections .4

computed above are defined in Lerms
t= of their position with ruspect to

Sbody axes as shown in Figure (6.2).
The p0544-1- direction of e,-cb
surface would produce a rotational Control
velocity vector into Lhe miubile. Control

Surface Surface3 1
The affective rolling moment

deflection is the average of the
four Vs computed above. Control

Surface! 2
(14(1+ 6'2 + 63 + DO)

bq and 6r are defined as positive
rotations about axes parallel to Figure 6.2 Control-Surface Arrangement
the body y and z axes respectivrely. and Definition of Surface Deflections
Therefore, from Figutre (6.2)

8q,- (6 -4 bi)(1/2) br =(6h - 5,,)(1/2)
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6a1.8 computati~onal .lv -The equatioas rpeenting the t91I4
control syate-m. ha-e- Ibeen det-1y&- In Paragraph a-3.trow gh.4 i
the channels of the control system functional di~agram (Fig~ure (6.1-))- ic
the indicated numerical operatione must proceed sequentially in the digital-

a computer, the same equations have been arranged in a chronological order in
the computational flow diagram of Figure (6.3).

6.2 Fli ht-Plan Programmer - A flight-plan programmer subprogram hau
beaen incorporated into the SDF computer program-whiab. allows a selection of
several types of functions for trajectory control of the point-mass reduced-
degrees-of-freedom options. The flight-plan control sequences outlined in
this section permit a selection of 6 control options, with 4 of these having
aselection of 3 indepandent variables against which to program the control

ounther s Fiveof______ programersarecontainedionesubprogram;_th
is ~ ~ ~ L cnandianatraesbrram (Section 6.2.3).fontion s. ieo hs rgam r contained in onal-,rae subprogram the-3

6.2.1 Flight-Plan Programmer Control Commands - The flight-plaan program mer,
as defined for the ODF computer program, is the means by which the trajectory
iscnrle for the point-mass options. This feature of the point-wass
problem corresponds to the steering functions for an autopilot used in the
options- which permit the rotational degrees of freedom. Use of thu flight-
pl-fn programmer is restricted to the point-mass options since it permits
vehicle motion without rcgard to rotational inertin' (e.g. absolute spucifica-
tion of angl.e of attack versus MaclI ILumbe±.L or time). Since there are severalI flight-pltui iiethods that arc used ý2x~cnz:vely ditring preliminary design and.
acvnlopment of a -particular vehicle, a number of control methods have boen
selected ns a preliminary library of fliJgh-plarn program.., of the SDF com-puter
progra'm. As ouch, these methods of conivol act: availablu at the option of
Lti.ý unaly-*t by appropriate spcci~'nation of input dati. The fligrht-pian:a
that will be included are-

(1) Programmed lift coefficient CL, side-foree coefficient Cv, and
dragocefieenkCr.

(2) Proirammed angle of attack cz, and/or augie of sideslip, 13.

(3) Programmed body-axes attitude angles * e-nd 9 (local Eu.,Le.L- ang'les),
with a dynamic precsL;urvc feed-backv

(ii. Prgramedwin-axes avrIimal load factor, r. Cand n ý, ith thrust

included.

(5) Programmed flight-path angle y, versus altitude h, with 13 = 0.

The first four flight-plan commands will be curve-read functions of the ind -.
pvnident variables time t. Mach number MN, or airspeed Va. Flight-plans (1,
(2). and (3) represent "exact" flight-plan control commands in that the forces
acting upon the vehicle are dictated by the programmed control. (Flight-plan
(3) has a feed-back loop but is considered an exact flight-plan control.)
Flight-plans (4) and (5) approximate the action of an autopilot by employing
an error function and a gain to alter the forces acting upon the body. This
results in a trajectory that approximates the desired trajectory depending

on' tlr- frm of ±.hnp Pnmmand terms and the value of' the gain factor selected.
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ff~iovs he co~maz1Kd vaiiZ very ciosea. --A p~mnr n1j~
| perfarme.d ato de'termine how elosejy the dorputd•ed •d, tf~ctorrTolioVto "7
* commanded values (Flight-plan (4)) and is discussed in later paragiap. ii to

show the comparison. This method is considered preferable to an iteration
R proccdure to get a simultaneous convergence of several quantities since it

results in a substantial saving of machine running time to solve the problem.

1 6.2.2 Discussion of Selected Flight-Plan Selueices - Flow diagrams forI •the 5 flight-plan control programs are shown in Figure (6.4). Individual ex-.
-.- planations of the data required and the sequoncc of operations are given below.

Flight Plna (1) Programmed Lift, Drag, and Side Force Coefficients - This
flight-plan is the simplest considered and is intended for use with gliding

I or coasting bodies without thrust. The data required for this control program
arc thc parameters time, Mach number, or ai'rspeed, one of which will be used
as the independent variable for the command functions. Also required is the

S- dynamic pressure, q*, and the reference area, S. The technique is to obtain
SCLc, CYc, and CDC frceu: l.inenr .n-herpolations of tabular listings, and calculate

the forces L, Y, and D by multiplying by q*S. The problem is continued
without entrance to the aerodyneamc data subprogram. A control word is set

U ir.• 1y the executive program such that when this flight .plan progrrn.q is used,

thu aero subprogram will. be bypassed. This control method may be used Cur
obtaining the glide trajectory for a vuhiclc, the decay L-rajectory of a.I,tdellltc, or the rl-entry trajectory of a ballistic missile.

F1 Iht }1,in (P) Proirrammud Ang•le of Attuck and Sidoslip - This flight-

p) n :L-.3 similar -to Plan ( above ..ihtba c'.pt.•on that the attitude of thec
body, with respect to thu trajectory, i; known (i.c. speei~ied). •iuch
knowledge :,luw-; the inaP.,•i!o of thrust forces and a determiintion of' thrust
components parallel and normal to the flight path. The dat,, required for this
control mode are the parameters time, Mach number, or airspee, against which
the command functions of angle of' nttack, ac, and iiduslip, P., are programmed.
The comflands -e- and PC ore introduced as tabular ]istinus of the r.esired
para!-eter- W-.Ph .'c and R, given the problem is continued in the normal manner.
_-_ .e.•r..ynamic forces are computed in the aerodynamic subprogram and the
motion is then determined on the basis of these forces. This flight-plan
pro;.ra•mor may be used for' the ballistic trajectory by programming Cr and
• equal to zero. This is done automatically within the flight-plan programmer
subprogram initialization subroutine such that if using the point-mass option
wit'lI no fliht programmer specified, it implie,- that Q• and pc are zero, or
that the trajectory is ballistic. A particu-lar lift-to-drag ratio may be
followed by programming the appropriate angle of attack and/or sideslip.

Flight Plan (3) Programmed Rody-Axis Attitude Angles, */ and 9, With
Dynamic-Pressure Feed-Back - This flight-plan program provides feedback loop
control which is especially useful in the analysis of certLin boost--phase
trajectories and hypervelocity glide trajectories. This control is accom-
plished by modifying the attitude command according to the difference between
the computed and desired dynamic pressure corrected for planet rotation effect.
The desired dynamic pressure is specified in terms of the desired altitude-
velocity profile. In the case of glide trajectories, the feedback loop provides
a mth_.d ff contro!!ing the ski •PS e1-'i' no'-' if the correct flight-path angle
is not selected at the start of the computation.
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The following quantities must, be computed prior to beginning the flight-

plan programmer calculations: altitude, 11", . dynamic pressd--e, q:*, inertia!.

velocity, V, radius from the ccnter of the planet, R, local radial gravita-

tional attraction, gCZ, horizontal and vertical flight-path angle a and 7,

and time, airspeed, or Mach number, whichever is to be considered the inde-

pendent variable for the body-attitude angles, * and 0. The body-attitude

angles for the specified maneuver and the velocity-altitude profile
a non-rotating planet condition are introduced as tabular listings. Tile com-
putation proceeds as follows: From the commanded altitude, hc, the density,
ýPc "is determined from the atmosphere subprogram. This altitud'e and density

are the desired quantities the vehicle should have at the computed airspeed

if no planet rotation existed, (i.e., the centirifugal relieving effect being

computed using airspeed; Va, which is also the inertial speed, V, under these

conditions). Planet rotation changes the situation, making the airspeed
greater or less than the inertial speed (depending on the azimuth direction)
with Va in general being greater than V when the vehicle is moving against
the planet rotation (westward in the case of the Earth). The method used to

correct this is as follows:

Assume that equilibrium flight existed over a non-rotating planet.. Then

r2 Va
CL 1/2 Pc Va2  = WT 1 Va'- (6.41)

For the same airspeed, and assuming the same CL is wanted, the condition
existing if the plclnet were rotating would be,

r

2 21
CL 1/2.Ol vp 2  = WT ' 1 (6.42)• gSZg R

L_

Solving the above equations 'or Pc., which is the desired densit-y in t.Ors o

the commanded dlersi~y pc ubtaiiie ±roiL t 1e 4 versus V, curve, results, in,

R - V2  6
PcI Pc K 26

L Z, R - Va 2]

T'li' coimnandcd dynamic pressure is therefore

qc /2 Pc 1 Va (6.4ý)

:and i:; used to revise tLhe pitch attituae by 2 , . .

Sc lt (qj - q×*) (6.4.5)

" t i: 1,, if'ied by

e,+ Ag (6.46.)

Best Available Copy



The vleof the gain coefticient,, Cq*, ndt e tenn±!q4 ernpi -4 Ct7¶totl

to thb caofiguration being considered; however, studies 4- MA "•_-v& i
have indicated a value of 0.02 degrees per unit &.I* is oR -the rro Cn-.rdd
of magnitude. The vertical flight-path angle is resolved to the pitch plane
of the vehicle by

Tan 7 

(4

Tan 9 = Cos (- + a) (6.4 )7)

from which the aerodynamic angle of attack is computed as

a - 7' (6.48)

The angle of sideslip, p, is computed from the same resolution as above by

COS 7 Sin .( • + a)( . )
Tan ~ o ~ 0(6.49)Cos 7 Cos @el Cos (-4.c + ) + Sin ) Sin 9e.

With the aerodynamic angles, a and P, known, the aerodynamic forces are com-
puted in the normal manner and used in the solution of the equwations of motion.

If it is desired to eliminate the feedback control, the value of Cq* is
uspcificd as zero. The corrected pitch attitude, 9 ql may also include -an
nttlAtud•e correction based upon the equilibrium stagnation temperature or
thin-skin temperature computed by the temperaut., ntoi ..... c•g... ,
Section 6.3. A greaL-circle trajectory which is unaffncted by lateral aero-
rlynn imh, furccs may be computed by making *c = Y.

Fiight-•-�(4 •, Ircgr)":cd Winrn-Axes Normal Load Factors, ntand nv, With
Thrust Included - The data required from the oreceding part of the 'p•og-am
are the parameters, time,; Mach number, or airspeed, ag"ainst which the commanded
vertical wind-axes nnrmal load factors, n-yp and ncc, are progarammed; and the
computed values of n7, no, lift L, and side force Y. The thrust T und Lit•

are also required. The analyst will also specify the. "pper and lower limits
Ahichh will be .allnwnr for' angle of a cack, and sideslip. Tn start the program,
initial values of a1 and p will be Gpecified which are compatible with the
initial n5 c and na 0 commnnded. The load factors are introduced as a tabular
listing versus the parameters time, Mach number, or airspeed. The C(X and
Cp gains are computed using the equations specified which are derived as
follows: The wind-axes normal load factor, n7, is defined as

n -L + T Sin a C L cas + T Sina (6.50)
"tyL gref "6m gref

The derivative of n 7 with respect to a is

dn 0La q*S T
-2 + Cos a (651.)

d t '. gýref lY/gref
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Sam
Assume.that CLa can be expressed as

= 0 L (6.52)a
ThenIt =CLg~ +ý Te a•-.: •,+ -+ Coe s

dc l7 gret a Zýge

L + T Cos a (6.53)
ý ' gref a gref

The gain factor Ca is therefore d or
da

-" gref (6.54)(z L - + T C us Cs

a

Using a similar technique for Cp

- w• g, 1 (P.55)

The correcticns to the aingle of attack and sideslip, Art and AIB, are computed]
using• th-, rmnns Cr, and. 3 mul-ti-plied by the differcnce between nfl and na,
anr nac, and na, respectively.

Thir t.echnniifle .-nr nonlrnl lms been inwe.ireti 8 get +r.o t.he stOb)iity of
n] 1q1 F.ion• sna t•he snorilprv with which the na.rwnanded load factor is followed.

The resu-its(l) are shown In Figure (6.5), for two typical command functions.
Considering the fact that one-second time increment was taken as the computa-
tion interval, the results are cunsidered in good agrgeetiment with the commanded
values. The advantage of this method of control, compared to the normal
iterative sclution. ips the reduction in computing time required since every
cycle through the computation advanced the vehicle along the trajectory.

(i) Ilt should be noted that this investigation was run on a supplementary
prograw-1 výith typical • i•rtia and aerodynamic characteristics of an airf re
Very large time incremenjuisru uuL Lu .es. the stabilLty of the solution.
Results of actual computations using the SDF computer program should be greatly
improved over those shown.
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I-!
Sidsi~p iiLe ~iil1~~'ezio. -- The -)a~ta xaQuir~ !.f~ F &o

-are abtud-d- _e~o~eMads, thrust, lift, axd~ 7
vertica• flight-a•pth angle and its time. derivative. Also requir~d for this
program are the upper and lower limits which the angle of attack may have.

To start t e program an initial angle of attack a will be specified which is

compatible I) with the 7c versus h profile desired. A tabular listing of
Sth e 7 c v e r s u s h p r o f i l e d e s i r e d i s t h e c o m m a n d i n p u t . T h e p r o b l e m i s t o f i n d

the angle of attack which will provide the necessary forces to follow the
Icommanded flight-path angle at the altitude computed. From the relation

SVgd = T Sin a + La ca -,v)tgref Cos Ydt

i the expression

S_ ~T Sin a + T.U U - ;ýýt gref Cos Y 6.6I~~ 1=. r ~ (6.56)

is obtained. Differcntiating with respect to the angle of attack gives

(6-+L57)
71a% 7i-7 Vg

ýirwrl i-hp rhange in nngl e of rittack required to correct for an error in commanded
flight-path angle rate of change is

Ah V +

= T Cosa• + rcI ( " 7);

Changes in flight-path angle ;ire prdured . by Idmirewie appl. cation of flight-
pnth angle rates accordinr, to the relation

d7 7dt

Therefore

S=•-dt (6.59)
da d(C

and substituting Lhe expression previously obtained for dy/da gives the resu-lt

_AZ T -t +g ' At (6.60)

(1) Aetually any initial a will suffice, however, the nearer to that
actually•,,+ +eq ir t.... mor+e ' exctyh res,_J.ting. flight nnth urill -r-,llnw fnq+

comnanded since this is an approximation program.
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rz Therefore the-change tn, fll4tt-at aýt for a, given 7

ari•7--:tn.. . ..7 -................... C --- -•

Ui M

cos7 1 a ) La-Y (6.Ai)

The total change io angle of attack may be obtained by

Aa T X +L H (? - - 7 , - Y (6.62)

where g is a gain factor on the time rate of change.

"The new angle of attack may be computed from a knowledge of the existing angle
of attack and the increment Zt\a defined above. An investigation in which the
characteristics of an airframe were approximated has been made and the results
are presented in Figure (6.6) which shows the s.olution using the hbove feed-
back correctionfs to be stable and to approximate closely the desired flight-
path angle.

6.P13 Fl igh Plan Pro1-rai 0c r0I - Pro-rarmed Torcqung Cor.aut to Pitch
Rate Gyro with Drift and Bias - Flight Plan Programmer 10 is an alte-rnaUc
subprogram which permits the calculation oi dispersion associated with gryro

,','.ro -ari winad t'or vehilesl employing three single-axis, rate integrating
gyros as the basic att~itudeQ refercu,-. This flight plan Tprogrt-wiuRmr' v,-Cdesigned [or Ltie execion u. a dibpuron anaysi Lt bou'r d

mi:isioii. Thc pitdh ..... d of thc vehicl a during boost is spoeified by a
stored gyro torque ipro-sram; the pitch rate intcLa.Uixa, ,yro is deleted durin:g
th.n f i i plmse. Yaw and roll torque progr'ams which nominally maintain

sideslip and bank atngie zcro are simulated. This flight plan progr:ur
de•velops thu nngle or attack:, ovle of sideslip and bank angle associated
with non-nominal winds and errors in the rote inle.grating ayros.

in developing the flight plan programmeor, the following basic assumptions
wuer made.

a. The vehicle follow• the rate integrating ,jyvo urrur •signa ...... lat..y 4 -

This implies a perfect control system :!]C i vehicle with no m1o'i'ent of
inertia.

b. The instrament erro2rs lnd vtinds which introduce changes in the angle
of attack, angle of sideslip, and bank ang].e are smiall o that the
total angular change is the sun of the effects of the individual
perturbing errors.

c. The xz body plane coincides with local vertiesl pln.ne and contains
the relative wind velocity vector during the nominal (no errors)
flight.
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t- inds -Th effect c~E I ~QXi d iathe point viO1 'optiona_
ifth vbcle--a~t-i+,ude i ~c.i&b g ~ ei

~-*---~ -IJthaetr payxetrained from readh ng atrilw Qox .~,-l
S....... - t of attack and sidesl p-cj a be rasceraineid. An expression ?or- tbe.ang-•6.

attack, c, and the angle of' sideslip, Pw, is obtaibed below. -.

I In Figure 6.7, o and 7 are the flight path angles relative to the ux-per-
turbed wind coordinates XA-YA-7,A. The angles cA and 7A define the airspeed
vector and the perturbed wind coordinates XAYAZA. Applying the law of sines to

-t triangle zcN-Zg-M gives an expression for the angle of sideslip due to winds.

sin (aA - a) = sind d(6.63)
sin Ow cos (

The angle d can be expressed in terms of lknown parameters by applying the law
of cosines.

cos d = -sin (aA - a) sin 9

The feasibility of utilizing the approximation sin d =1 in equation (6.63)
_ will be investigated by determining the maximum, ,a.iue of CLA - a which causes

sin d to differ from unity by one percent. The value of cos d (-139) which

corresponds to sin d = .99 is inserted in the above equation with sin 9 at
its maximum value of unity. The results indicate that a aA - a of eight
degrees or less will introduce an error cf one percent or less in Equation
6.63.

Applying Lhib approximation to Fqiation 6.63, the following expression eor
PW is obtained.

SiW = Sin-1[ rCos 9 Sj( -A (6.64)

The angle of attack can be determined by applying the law of sines to the
spherienl triangle YN-XA-A

Sin 7' Sin f
Sin 7 A Cos (GA - a7

MItilizing the approximation sin f = umity and solving for 7' in the above
equation gives the following result.

sn-i [ Sin 7A ) (6.65)

The angle of attack is obtained by subtracting 7' from the pitch attitude 9
specified by the control system.. Thus

[-Sin- Sin 7A - (6.66)a = @ Sin 1 Cos (cFA - a)]

When thp pitch-rate-integrating gyro is deleted from the control system (at end
of boost), the angle of attack is assumed to equal its trim valuc, m.odif..d to
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~ ~ ---±noLud- -any~~,ixp ~ t~ ~ ~ t~i an~ _ _!

()is zIt d ajIit___ -* --

( B). vat 1!v% :k afo -attae -Y Me
K26 from its nominal value of oze._ .. .. .

• a K2 6  (6.67)

The pitch attitude is obtained by solving for 9 in Equation (6.66).

- -Pitch Rato-Integrating Gyro - The pitch attitude of the vehicle is con-
tr•olled by torquing the pitch rate integrating gyro at some prescribed rate,
qc' The pitch attitude error is given by:

go. q, q dt

However, in this program, it is assumed that t.he above tr:vui is c-orrccted in-
stantaneously by the control system. Therefore, the pitch attitude at any time
may be written as

9initial qc dt (6.68)

,hui., q 1, tihI. (PFTA10O) of pitch rate commands as a f&Nnction of time.
Errors in the pitcih program and/oar errors in the rate initegrr,'Lbig g.yro an,_
introduced by incluaing error cuiabLd[• in Equation (6.68) Rs shown he!oiw.

G n -til ' '�n•..•-. + K24( - K2 5 t + K2 3  R (6.69)

wherp K2 1  = torque constanU, nominal valuc of one
K22 = pitch gyro bias, degrees
K24 = error in initial pitch alignment, degrees
K2 5  = pi tch gyr-o dr.ft rate, degrees/second
Kp-i = (jfnl half pitch dead-band width, degrees

RNTP direction of perturbing piLth fouve due to misalignment of thrusL
IRNTPI and/or asymmetric aerodynamics

Yaw Rate-lntegrating Gyro - The yaw rate integrating gyro errors will ceuse

a rotation of" tha vehicle about the body z axis and thus introduce a sideslip

angle. The resultant force acting on the vehicle will alter the direction of
the velocity vector so a- to reduce this sideslip angle. The geometry involved
is presented in Figure 6.7. The nominal orientation of the body axis is
xnYnzn; XAN is the nominal velocity vector. The azimuth angle between the
Xnzn plane and the local geocentric system (X YgZ ) is the nominal azimuthal6g g
vehicle attitude, *,. An error in the yaw rate integrating gyro introduces
a rotationi, •, about the body z axis as defined below.

"K11 + V1 , ÷ •l2 I K1_ (- IM! RN•N)Y" (6.70)
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where KI7 Wjo bias; A- eeS
,• .~~~~~~1 er~ror ia n.$• 1AT.0 _ aighM- _t - degr e e. .s ......... :;"; -

K12 ya.. .. . -±it A SeZi4,_
.... ....- K18 one hUlf yaw dead-band, width,-d4gree. --...fRNTY - direction of perturbing yaw force due to misalignment of thrust

T and/or asymmetric aerodynamics

The contribution to ý associated with imperfect zero torqui.ng of the gyro
required to mnaInta'n zero angle of sideslip is neglected. This contribution
can be approximated as an equivalent gyro drift.

The change in azimuth flight path angle associated with vwhicle lateral maneuver-
ing reduces the resulting angle of sideslip by 9, that is

(6.71)

j where k can be obtained as follows from the geometry of Figure 6.8. By apply-
ingl the law of sines to the spherical triangle Zg-M-xn one obtains

Sin P - Cos 9
Sir. (a - So) Sin d

Again for =mall P, the sin ot a ib approximately unity as A "own in the dis-
cussion of the effect vf sinds. The above expression then simplifies to

Sin ' Cos 9 Sin (a - Vo) (6.72)

whcrc ,1r, ic tabulatcd vcrsu.s time and is equal to a of the nominal trjectory.

Roll Rate-InLegraL ing Gyro - A similar investigation of the lateral dis-
placements due to the 'oll. rate integrating Lyro errors is presented below.

The roll angle is developed from the expression:

K1 3 + K1 9 + K14 t + K2 0 (RHTh/I/RNTui) (6.73)

where K1 3 = roll gyro bias, degrees
K19  = error in initial roll alignment, degrees
Kl)j = roll gyro drift rate, degrees/second
K20 = one half roll dead-band width, e(lerees

RNT _ direction of perturbing roll force due to misalignment of 'thrust
S= and/or asymmetric aerodynamics

The contribution to • associated with imperfect zero torquing of the gyro re-
quired to maintain zero angle of sideslip and bank angle is neglected. These

contributions can be approximated as an equivalent gyro drift. The roll angle
arising from the roll gyro error will in general introduce a bank angle BA and
a sideslip Pp. The geometry involved is given in Figre 6.0,. The velocity
XA is located in an arbitrary position to simulate lateral departures from
nominal which have previously accrued. The bank angle can be expressed in
terms of the angles b and c ss follows:

BA = e - b (6.74)
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GEOMETRY USED TO DETERMINE EFFECT OF. ROLL GYRO ERkRORS
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'saw "-i.ThR angle c may be determined by using the law of sines on the spherical triangle
L Zz2AXn

Sinfc Sin (a. to) --- - - - 2•---- -

Cos 9 -Sin GT

In order to spccify the correct ouadrant of the angle c; the tangent of c is
also racuired. The ccsine of c is needed and is:

•-=-Sin 9 + Cos aT Sin 7=-=Cos e ... (6.76)
Sin UT Cos 7

Dividing (o.75) by (6.76), the desired tangent runction i6 obLauled.

Sin (a - *o) Cos 9 Cos 7.7
STan a - -Sin 0 + Cos a 1 , Sin 7

.... :-nglc b is found in a similar maanner froim' 'triangle ZAXAXIn

Sin b Con a Sin (a +'. (6.78)

Cos b -Sin U/Sin aT (6"79)

TLan b =6 a. ± i (6.80)

'T' -aln"1.e t ir edae, JI) (6.80) and atain the t:ingent i'tuiction wust be used.
'1]'_a: ::iiia ..uid ul • [0' :A (_,'_ rt_(nIItk;r('c and are determfined froam Lialtgie znXAZa as:

(!0Sa =-Sin 7 + COB UT Sin 0
Sin UT CoS 9

3Lu cosy7Si~n(o - o) (6.82)
Sin aT

Dividing (6.82) by (6.81), thu tangenL of a is obtained.

T = Cos 7 P-n (, - .C) Cos 0
-Sin 7 + Cos ai Sin 9

When the total ang].e of attack in zero. antle a is undefined and the bank angle
equals the roll angle. 'hen this occurs, the computation sequence is directed
to bypass the bank angle computations presented above, and the bank angle i8
set equal to the roll angle.

The angle of sideslip associated with vehicle roll is determined from
triangle XA-M-xn.
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The angle d is again assumed to 'be 900. Using Thi ar 2iirAton the
L&expression for OPis,

$in Pp =Sti. T in b (.1

kThe total enale of oides-lip due to winds, as well as the roll and yaw grrxo
errors, is:

+ Pr + Pp (6.85)

'1itS~ cornpletes the duevelopirent o1' ae fliCgan pian- pra ,zer wnicrx pruv des
expressions for angrle.-of-atLtack,, angle of sideslip and bank agl which are
associated with specified winds and instrument e-rrors.- A furietiorial flow
diagram of the flight plan programmer is shoxrni in Figure 6.ic.

o.3ý Structural Temperature Limit ing. - A subprogram is formulated whichi
will override or modify the commanded functions, from an atutopilo I: or flighot -
plan programmer according to computed structuiral temperatures aLnd thus alter
the trajectory to relie~ve We aerodynarmie heating. The tCemperature control
funiction is of -the forz!:.-

Total command programimed com.,.mand + 2kcomr!!Lnd correet-ionn due Ln ovtrip..

eratore + 2command corrections duo to t~emrperature time rate of changIe.

T1lie commndf. 1 ;etr mauy be any berm bilat cqn be. cont~rolled byj eiLhI.L lue
ait~op-i. I a or VID ic ;-,plan pro!grIaDMmer, bob MI( tieblaeLi' 'k''b i( by Lu ont'x

Guv l;a, LmoaLLes faI)- . _i-~ uch co(_ntrib-uting, its, effect to change, the
I.t, vanid reLieve the loca]l heating,. Stince the bruajeebLOry C!isnige tuo

pra)vi do a. relief of the tempera~ture at one local point mnay, in many instunces,3
flg!:v~vc he toinpera-,tarC at- sole the poiat, th -ctr-Ot Inclv'

the Ltemp~erature limit functions will represenYt a ciompromise 'betw,,een the
no 'r~rto o 'nbc1 temneprature a used.

6.3.1 Temperature Limiting Problem Formulation - The meuthod for accom-
pliih~g atcipettu'elimiting otrl wh-Jie comnputingý the trajectory, in, to

mo1dify bite comi1(and funrctions generated by bite wautopIlot or flight-plan pro-
gfraiginer lby 1iurierrei~tal cuuuuuanuds WhLich are func-tions Of -a temperature, or i tsV
time derivative. Assumiing im' thl pit1-ch Li i-e i; bite flight. Parameter to
be controlled, a typical block diagram soC t.he flight-plan programmer (or,
sl eering ftunctions for an autopilot) mray be as shown on Lhe following
Page:
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FUNCTIONAL FLOW DIAGRAM.
FLIGHT PLAN PROGRAMMER 10

Oft~dK a= 26 a0
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Program [e+ gel +abo,4->9 Cotn+ rbe
of go,- + or Aut.i..e.
vs. Time + Differential EqUs.

_ I
SProgramc 2 = C()Ts + Gains Ci and

of Va0  C2(T_)Ts + C0(Te)T, C2 as

--- vs. hCq(* -. q*) + f(Ts) & f(Te)]

Ts Ts TeT

Fi2ur: 6.1: Typical Steering Command
Vunction Modified by Dynamic Pressure

RE-vro• and Structural Heatingý Limit Feedback

_•l. ~ ~ ~ ~ ~ 1 0c 'v a,.ior!-ro3•, ,_O o ' is r%30,if- ed by an crvu~r in ;nul

prrssurc nnd a temperatuM limiting fu,-'tion which is the subject of the present

-qualysir;. The teilorature limiting subprogram is, therefore, a feedbac1 - loop
which uv(_xri&u a prograimed commnand function. The gain factor.; CI(TO), C2(T);
CI(T.), ,-:nd C,(T e) are enipirical functions of the structural or Cquilibrium
rta,-na-tion tetpcra.-ttre which increase J.ni magnitude as the l~iitin. ternorlmte
is approached. The values of -the gain factors are selected so that the terup-
eratare-l.imiting subprogram exercise s no control when the tmc-npcratLures are

noL critical but completely overrides the basic pitch-.attitude command, together
with the corrections due to errors in dynamic pressure, when the temperatures
are close to the limit. The total pitch-attitude command is given by

0' = Qcl + 6c! +tPc2 = 0 el + Cq,* (q* - qc*) + CI(T 5 ) Ts

+ C2(Ts) T3 + Cl(Te) Te + C2(Te) #e (6.86)

For the example case, it is assumed that 0 must be reduced to loweir the

structural temperature, Ts. It is further assumed that increasiag 0 to get
the missile to a higher altitude will reduce the stagnation-point temperature,

Te1•
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.The gain faqtorsi axce introduccd into tbx-rgZras taaerlstXrrif.temperature. The. form and magnitude of"tlise- galn factors wv1l----Cfn l ...............

in the discussiont of an example -probleam,:.Prarap 6r ,.2 Tibtt 9 W-f'Ut~
" •and their time derivatives, used. as intelali~gne for the temperature limiting

loop are computed in the temperature monitoring subprogram which is describedi t in Section 7.

The control quantities which can be modified by the temperature LImitingI * subprogram may be any parameter which, when altered by the flight-plan programmer
U-or the autopilot, will change 'the trajectory to relieve the temperatures. Typ-

.ical command parameters may be

(a) Angle of Attack, a

(b) Lift Coefficient, CL

(c) Aerodynamic Roll. Angle, 0A
(d) Pitch Control-Surface Deflection, 5 q

as well as the pitch attitude example used in the explanation above. The value
and form of the gain factor functions selected will depend upon the parameter
which Lhey are iijudif,.in.._ and, until more exLe'rieuCice is A,.,d with thl s tyj(: of
control, will have Lt be. determined experimentally. It should be further noted
-that several structural, or equilibrium stagnation-point temperatures may be
used to compute the tempera~ture limiting correction instead of only one, as
u L ed i_. Lhe ,.ri(jJ~n,9 exnlacnation. Euch' 'mpuratiiref wouLd have its own ruain
:factors in thiqs eae.

Figure (6.12) prcsontu a functional flow diagram of thu temperature-
limitingr subbprogyram computation for the flight-.plan programmer shown in
Figure (6.11). The computation of the dynamiic pressure feedback correction is
nut coiiuiJi'cd .!art ofu the pr("scnt anrtlysis and is, therefore, omit-tcd. It is
fur'ther ascumcd, for the diagr-am of Figure (6.12), that lateral aerodynamic
oer.cs are Ln !I.'e kopt very small and that the body yaw angle is commanded uo

u, ý tihe instantancoijr azimuth angle. The operation of the fligIht-plan programmer
is explained in Section 6.2.

6.3.2 Example FormulW.ation - An example formulation of a temperature
limiting program, as applied to a body-attitude-angle fli.-ht-pa n) prog-rammer,
iu :•uw presented with particular attention given to the method of determining
the gain factors Cl, C2, etc. The values of the gain factors should be such
that, as Ts approaches the allowable upper limit, the commanded angle of attack
(related to the pitch angle, @) should go to zero. Also, as Te approaches its
upper limit, angle of atLack should be increased to give a climb into leas
dense atmosphere. The corrections provided by these two temperatures are in
opposition to each other and will, therefore, produce a pitch command which
will hunt for a compromise attitude angl8. Since - isi relat.d t a through
the flight-path angle, 7, an instantaneous change in 9 effectively changes a.
Assume, for example, that the allowable structure and equilibrium stagnation
temperatures are 1000OR and that the maximum angle of attack anticipated
from the commanded pitch attitude is on the order of 10 degrees. A typical

1.34



V __

-IN-UT DATA FOR TVAMRS 1,'IMJTING SUBPROGRAM

TapT FROM THIN SKIN 13ROGRAM

WE Teo T6 FROM EQUIL33RIUM STAGNATION TEMP-
ERATURF PROGRAI4 _

TAUARLSTN OF CI(Tr,) AND C2 (T.) AS f(O

- TABULAR LISTING OF CI(Te) AND C2(Te) AS V(Te)

S-• COMPUTE AOC 2

IAOC2 = C1(Ta)TS + C2 (Ts)is +

I -- CI(Te)Te + C2(Te)Te

[TRANSFER TO FLIGHT PROGRAMmak
p1

UUMMAND
= f(t, MN, or Va)

NO DYNAMIC PRESSURE FEEDBACK

COMPUTE 0 C,

0C = OCI + a C21

COMPUTE a

CONTItU
PROBLEM

FIGuRE 6.12 FUNCTIONAL FLOW DIAGRAM - TEMEERATURE LIMITING PR~OGRAM
CO1~2nE WITH COMMANDED BODY ATTITUDE ANGLES FLIGHT PROGRLA1O
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example of the ±'orin of cI(Ts) isshown in Figure (6.13).

-. 015
W- Allowable T-

-. 010
Cl(Ts)

0•-- -"005 J.I.o as I

0 200 400 600 800 O000 1200 14O0

Figure 6.13 Gain Factor CI(Ts) as a Function of T,

The gain factor Cl(Ts) shown here has the property that as the skin tempera-
t-are reaches 8500 R, the attitude angle starts decreasing proportional to Cl(Ts)xTs,

,ind Js reduced by 10 degrees as the allowable structural temperature is appronched.
From thuri un, the decreaut is directly proportional to the temperature, T.. 9he
gain factor Cl(Tc) might have a similar form as shown in Figjure (6.14).

C• (T.[e,) I

.004- I "Allowable TO

".002/

U -,---_I__ I-__|

u 20oo 4oo 6o0 8oo 1000 12a0 i,0o

Figure 6.ili Gain Factor (,I (Te) a; a Function of To

This gain factor function would increase the abtitude angle by 3 degrees as
the allowable equilibrium stagnation temperature is approached.

The form of the gain factors that multiply the temperature derivatives
are similar to the factors discussed previously, but are slightly more compli-
eated to derive. These factors, in effect, must anticipate the temperature
rradient and start corrective action that will take into account the response
time required t,- provide a relief. Assume that 10 seconds are required for
corrective action to be felt by the vehicle and that the roaximum teinpeiature
rate to be expected Ls on the or'der of 20 degrees per second. At this rate,
in 10 seconds, a temperature rise of 200 degrees would occur. Therefore, if
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I this rate is encountered when the temperature is already 80O degrees correetive-
action must be oecurring. Assuming futher that only about a 3 degrees changef : in anale will be suffiuient to start the corrective action, typical C2('Xls) and
C)(Tn) gafn functions would be as shown in Figures (6.15) and(6.iG).

t -. 2.20-

I ~-.15.1

I 0C2 (T8 ) C2(Te)

I-.5 .05

0 _|.. . 0 o
0 4oo 6oo 800 lOOO 0 hoo 6o0 8o0 1ooo

Ts OR Te OR

Ti gure 6-t5 Cain Factor Csp(Tr) Figure 6.16 Gain Factor Cn(Te)

6.3.3 Discussion - It should b nored that the precneinga explanation is
only Oq i'XamplC of iib riublum solutiot po-ilontem rhy Ltr b. uT;ud. Tc t usetudin
lorm o.f a the ,ain-fattor p uro cLg ns d ue l t have to be deteratined eandricallm ain(
witi depend upon the ameratie thc reo t yna exic, and inertia t...lw..... te.i... o'ct
.use the vehicle, the gant used, an' i.hol anicipcu ted flight path.

The tcmperotige computation subpror.part oia c'cbInt 7 is on upproxiwable
sotl' ntion of tpe thin-skin temperature of a twu-dimet nional flat plate and of
bvie equilibrium stagnation-point temperatLue, This computation Is sech in
lieu of t more oxfact probra dut to machuine flimItatLiUns tud computatio
th1e. maximum beli peviLnres compured ring. l exa;t, the alowablu [,norcas in(,anlLue
used in specifyined sbh s gain factors should accou;, for the approxire atidcns
involved.

Special flight conditions and/or particular combinations of allowable skill

and crtagnation-poJnt temperatures may preclude tpiug peraature limiting by the
method outlined. An example hituation may ocur when the vehicle is in a
verticaif cliesb with the equilibriud stagnation o-poine temperature reaching te s
allowable limit. In such a case, the normal correction command would be to
increase sthe angle of attack, but the particulr flight attitude is such thatthe maximum relieving notion mny I'e occiirring.- Urnles.; the inecrase In angle
of attack produced a substantial increase in dr-ag, and therefore a decel[eration,
the corrcetive action giytii by the "P,'esent p.Euprall may not prod•uce the desired
results. Another situation which may oceci is when the allowable temperattures
are specified so low that, regardless of the maneuver of the vehicle, the
limiting temperatures will be exceeded. It. is necessary, therefore, to exami~ne
the physical situation of the flight and the control request~ed before the

temperature limitingt program is use:d.
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7-. ALOM I ELW,-!

The ODF computer progrwa includes a subprogram to monitor a chacteZri-&
Sstruotural temperature or aerodynamic heating rate. In addition Lo providing a

knowledge of the heating parameter, or temperatures, the aerodynamic heating
subprogram also provides input information for an alternate flight-path control
program so that the degree of heating may be partially controlled. The aero-

I dyna•m•c heating subprogram way also provide a reference temperature to the aero-
dynamic data input subprogram for use in modifying aerodynamic coefficients for
the e.ffecto of structural temperature on static aeroelasticity.

- • -",........". ..". -: --' P. + dynari c heating program

u •requ.res a problem formulation which will account for the variation in local
£ -. flow properties with angle of attack, boundary-layer type, Mach number, alti-

tude, and type of structure. Hiowever, thc problem of aerodynamic heating is a
complicated onu and a detailed analysis of the temperatures in an actual
structure requires an extensive computation. In view of the extensive compata-
tions assodiated vdth the SDF computer program, it is necessary to simplify the
aerodynau[d heating cubpc-gram as :much as possible while retaining those features
uf the solution rcquired for the rest of the program.

The aerodynamic heating subprogram formulation outlined in th.is secti on is
made up of two parts; one of ;....h computes the thin.-skin tcrperatu're of a flat
surface at angle of tt..•k CA s1sijji, two-dimensional flow with an attached shock
wave; rind the second which ,:oJL:Jutc5 thu uquilibriuit stagnation temperature on a

.1m•cph-rical, or hemi cyl i rider, nose. The co,,bijiaLion of these two problem
formulations prnvlides temperatures with tnc ruquired properties which are of
SufficierL accuracy for the monitoring and control purposeb of Lhis prugr.o-r,
Mre enet ana].ysca of the heatinjg of particular structures must, of course,
be por'o•u•d with more sophisticated heating problem formulations which 3.re
beyond the scope ef this analysis.

7.1 Thin-kin Teaperaturc of Arbitrary Wedge at Angle of Attack. - The
computation of the thin-skin temperature of a two-dimpensional flat surface at
anglu uf attack, as applied to the aerodynamic heating subprogram of the SDF
computer program, is developed as follows:

Ignoring condchti on into the structure, the basic heat energy-bEilance
equaLiun for an element of skin is:

Qo - Qr = Qs (7.1)

which states that the heat energy stored in the skin is the difference between
the convective heat input and the heeat radiated to space. Basic definitions of
the three quantities involved may be expressed as:

"hQc = h (Haw - Hs) (7.2)

Cp

Qr = Css(T5s - Tr4 ) (7.3)

Qs = bspsPs Ts (7.4)
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Although r'elativel.y simple in appe~raxne~ the r~uali~ng n~eJ uQLh~
e '. a ffi - a athereba tp tA& -1te .s olu tion wlieri cia~s aaoh me tlaod.

are ua~ed. oeet"1e pr:edictor-corractor integration suloroutine used-in th~e
SDF Qomputer program allows the problem to be solved with a rea&onable alouhnft. o±fj computation effort.

__~ So:lving for T5 gives

-__h (Hawr Hs) 0* Ell (Ts 4 
-T

4) (7-5)
-5S 
8 Ps cPso 8 sPscps

where cp and es are properties of the skin mater~ial and surface coating, and h,
Cp, and are properties of the air flowing over the point on the bodY untrder
consideration, both of' which are functions of Ts, the skin temperature.

The auxviliary furictions defining the properties rioted above will now be
defined. The mrethod of defining the heat trarisf'er properties is based upon the
ret'Prenne Prnthal-py method outlined by Eckert in Reforence (21). Trhe convective
heat input *tc the skini depends upon the heat transfer coef~ficient, which is8

h'1

Nu =bn=Kn1r(Rw (Prý*)1/

Tho notaLion ()si;gnif:'es that the quantit~ios are based upon the referenrf
ulit .na ps-. .Lxtt, nP !,.; e-N pi */ Pr- Eiid so-Lving for the heat transfer coefCficient,

Thun polyraoutdal

If D1 + Fl2?T D DT4 (7.")1

approY uiiiatus, Lhe curve of enthalpy ao a function of Lunper~atUre g.i-ven by Keenan
and Kaye, Reference (22). The constants arc:

Dl= -94.38

D2 0.2331

D = 8.4 x 1-0-6

Equtati-on (7.7) may be used to compute the enthalpy of the air at the skin
tempuraLuro, T$, or the enthalpy of 'the flow outside the boundary layer corres-
ponding to the local flow temperature, T2 . The inverse relation between enthalpy
and temperature is given by:

T =D4 +fl5H + DO 2  (7-8)
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K

I* where

I' ~D 4. =400 ___

I P5  3.829

I D6  --l.978 x l.-4

Equations (7.7) and (7.8) are valid for the Keenan and Kaye enthalpy
temperature variation to approximately 8000(R but disregard the effects of
dissociation or ionization. These real gas effects become apparent at approx-
inately 400001, see Figure (7.1). However, within the range of temperatures
(either local or structural) which are tolerable by aircraft of the foresee-
able fuuLui'e, the effccts of dipt!gociat.ion are negligible and the Keenan and
Kaye curve is considered valid. For this reason the effects of pressure are
omitted from the relations for enthalpy, Equations (7.7) and (7.8). The
reference enthalpy is empirically defined in Reference (21) as:

H* = H2 + 0.5(Hs - H2) + O.22(Haw - "2) (7.9)

p The adiabatic wail temperature is given by2 ~rHV2 2
Haw HV22 H2 4 (7.10)

2Jgref 5.012x104

The constants KH and Ys,, used in Equation (7.6) and the recovery fLactor iH'
Sused in Equation (7•.10), depend upon the local Reynolds number of the point

on thQo ur'acc under .......mdration. If Rh, is less thanr R1b; Lhe flow
mit u,,a tc bc 3•,•nin rj rl the conutants have the values.

K11 = U.332

Yf -- 0.500

U 0.850

If RN2 is greater than ANcri • . the flow is assumt;d to be turbulent and Lhie
constants are accordingly revie.d to

KH = 0.0296

H = 0.800

rH = 0.900

The heat capacity and emissivity characteristics of the skin are functions of the
skin temperature, so that

fl(T,) (.1

and

cps =f2(Ts) .- ,

will be introduced as two-dimensional interpolations of . .U• ar listings.
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The viscosity variation with temperiature has been taken- &Suthe•aMI.e.
rev , atioin

_ = . 716 0 (7-13)
T*216)(500

which also neglect8 the effects of dissociation.

The temperature Ti{f may be computed by Equation (7.8) wheni H is H*. The
-local flow paanmeters, based upon the reference enthalpy, are defined by

S•* P2
- ___(7.14)

53.3 Tj*

p*M 1  (7 .15)

A functional flow diagram ottlining the sequence of oomputations to perfcrm the
entire analysis, including the computation of local flow conditions discussed in
Section 7.3, is shown in Figure 7.2.

The thin-skin temperature. computation formulated in this section is probably
limited to angles of attack less 'thazn 30 degrees because of inadequacies in the
cnomputation of the convective bent transfer coefficient and the limit at which the
shock wave is attached. At higher angles of attack the coefficient computed by
the present method is considered to be too low. However, iý ii LhE purpose of tho
present analysis Lo pr•vide a program to the SDF computer program which will
(a) monitor Lhe gross effects of aerodynamic heating, (b) i.pipementc the aerothermo-
elasticity tic-in of the aerodyri;u:iic characteristics, and (c) provide a t.-,,upera-
ture feedback reference for the corrective au[liun portion of the autopilot program.
Detailed aerodynaii:c heating computations may be performed by more sophnfiticated
mrnthods using the present formulation as an indication of trajectories on flight
condition; Vor which aerodynamic heating considerations are important.

7.2 Equili__brium Stagnation-Point, Temperature. - The stagnation-point

equilibritmn temperature is obtained by equating the convective heat flux to the
heat flux radiated to space. The heat flux to the stagnation-point of a hemisphere
can be predicted by the empirical method of Reference (23) which is based on the
analytical solution of Reference (24) and has been suzceasfully correlated with
test data. Use of the method of Reference (23) results in heat transfer rates41)
which are slightly higher than those predicted by the theory of Reference (24)
for Mach numbers less than 18, and is employed because of its simplicity.

(1) The heat transfer coefficients predicted by Reference (23) are approx-
imately 6 per cent higher than those given by the theory of Reference (24) for
Mach numbers on the order of 9 and for the altitude range of 100,000 to 250,000
feet.
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The method assumes conditions ofl equilibrium dissociation behind the. normral.kshoek
__ .xw~~~v~ ar G;presoa~ the stagnation.-point heat-.flhk ra'ate- bV t Myh'~

171003 (S 2600 ___iref

where 110 is given by Equation (7.7) substituting Te foxr the temperature and
[IT is given by-

HT =Ho + V'12 (7-17
5. 012x10o4  .7

The- heat flux radiated to space is

Qr = ce (Te4 - Tr 4) (.8

so that a quartic equation is obtained for' the equilibrium temperature. A closod
zolutiuni exists for the. roots of this equation but the manipulations arc- rather
Ludious, involving Lhue extraction of both cube and square roots. If a linear
variation of the emissivity, eel is assumed, Lthe equation is of fifth-order and
solvable onjy by iterative techniques. For this reason the following linear-
izatiori is adopted. (An approximation for the emnissivity, Cej is also made
lat,(er in the analysis.) If tho equilibrium '.emperature for Lthe current i~nstntnt
of time is xrciatod to a pruviouu uolution by

Te Tu - MT (7.19)

thon the quantity

Ten 4  (Ten- + +~ )1

cani be e~panded to a polynomia-L in the equilibritum L.emnpera Lure. The cxpanui.Jon
gives

Te 4 =T 4 -1-4Jc 1. 3 A Np + 6Te5  2 ATO
2 + 4~Te 1 +~ 4'

which may be approxim.-ated by

Ten 4 =Ten-l4 + LiTen- 3~ 6Te

since the change in equilibrium temperature is small compared to the temperature
itself. The heat radiated mnay then be approximated by

ex 6e (4T, ~~3 Ten- 3T n 4 - Tr 4 ) (7.20)

(n-1)

Where ee is approximnated by the value at the last known temperature Te. This
equation, linear in the equilibrium temperature, may be used in the solution of
the problem. Since the change in equilibrium temperattre is small compared to
the absolute value of the temperature from the last solution, the above approx-
jimation results in only a small error in most cases. if art iteratio. l.- uused ill
conjunction with thio 1Lnearization, the error is further reduced.
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An alternate equation will be obtai.ned ±for the ent**IPY~, Si.nai tki '44-'n-`
fit of. Equation (7.'1) is other than linear, thereby complicating the so1iu-tlon
for Te. Therefore

He = Hen.1 + &JHe

but, by definition,

1 • Hb - Ha = cp dT

Therefore, if Cp is the average specific heat between Te and 4000 R, then

H1e 6P (Te - 400)

where the constant 400 is included to adjust the absolute value of the enthalpy
at a given temperature. This constant is consistent with the reference enthalpy

curve of Reference (22) and Figurt- (7.1).

Then
men-, . .- (Ten- 4 - 400)

and
He• = • (Tp. - 400)

The eutihalpy vori•&'ion w L1i Leiuipeataiur. i ,ita±']y liliea•', Zo 'hat

cPn- = Cpn

when AT is small. Then tho onthalpy may be written

Hen-i (Tn -- 400) (7.21)

(Tenij7hO0)

Equating Equations (7.16) and (7.20), substituting Equation (7.21) for enthalpy

and solving for Ten, the relation

I 400 D+22417600 V. 13..15 IHT+ Te n1-4UU ( n-+D3TenI2)

P~ +T - aeen-I(3Ten-i4T
-~ SLL to00 0 T - Href

Ten

17600 T l Va ]3.11 r(DI+D2Ten-].+D3Tnj 2)'F L0 0- H - en-i Te n-1 3
I L 'I 0j Hrf)(Te n--400)J 4Qe 1 T 1

is obtained. (7.22)
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A functional flow diagram outlining the sequences of -Qiapvtation. requ'xq
Is ahn.n Fi o-e(7.3), The Va-u•-s of the cornst-u l ,pa-eters havebeen .om.-

11ine- c~+i ~A~onstants he tint~tie hti aIon. -Nt
that an interatiocn loop is provided to im'prove anuracy if cont•Ofeed nece'ssry
by the analyst.

This computation may be made applicable to the stagnation line of a yawed
hemicylinder, app......•'ia. ng a swept-wing leading edge, by suitably altering

f Equation (7.22) for the revised definition of convective heat input, Equation

QC Tl-ue(.f Icos X(7.23)
CF''- ('.76o} 0c the, ioioefng)

where

1IT 1 = hT - (HT-IH)(1-rII) Sin2 XLE

or

T= T1 - 0.15(0i.-H) Sin2 \LL

7.3 Local Flow Conditions. - Sect+ons 7.1 and 7.2 describe Lhe skintemperature computation except for the determination of the local flow condi-
UP tions - P,9 , 0 , T2 , MKT2, P .- and RN2 . These par&aeters must be computed using

, 1,raj-caUor y quantities obtained from the remai. icr ,f Uih p'ogriaii. The two-
diIW::'Iif;,Ii prucauru on a ".•edge ,.ith an attached shock wave (ReFerence (25) is
Co,'rolated by the sMti!arity Sir~n"•" MN Sin (at,) as; shown in Fiigure (7.4).
Also shown in this figure is the pressure predicted by the Tsien h-Ypcr:,onic
sLiiiiarity relation given, in Rfcfcrence (26), Page 263, which is

Cj +. ;ýX 1. (7.24)H (AN CIN)Tj

where CV is defined as the pressure coefficient for the pressure ratio aerouss
the obliquc shock wave and Oý is Lhe total angle of attack of the surface(i.e., the sum of the angle of attack and the surface wedge angle).

P2 0.7 MNP ] (7.25)

a =D7 + a (7.26)

(2) At the higher Mach numbers the variation of Q. with sweep back is
more nearly proportional to co03/2 I E
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.I The pr _ure-ratio_.is.thereo•.e ...

P2 0 o.7 MN2 +J1 (7.27)t p
AMR_ The density ratio across the shock can be expressed as a Dinction of the pres-

__ sure ratio using the Rankine-Hugoniet relations and is, for air,

P2 = P (7.28)I _ _

"I [

I-4- The temperature ratio follows directly from the equation of state

T T2 = P2/P (7.29)

IT P 2/P
To find 'V2 requires the computaLions of MN2 fro the relation, for a:ir,

M2 (P 2/P) d '.Sin'!p- H

Thie si,ock wave atiglc canb uic"i•e UQ'
MP2  Sin- H [MNnj (7.31)LI<

where MNis the fruee/strezua E~ach niriber and MNn is Lhe componient of the free-
stream Mach nwavoer norial to the shock wave. frelation betwcen the pressure

ratio across a normal shock aidA thc Mý-.ch nw:ibeor normal to the shock is given by

P I MNn2 1

~ -1

Sin- (7.32)

for air, which may be solved for MNn. Substituting Equation (7.32) into
Equation (7.31) gives

Si = _)T6 aj2, + 1/7 (.3
MN
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..I .. =-- -= -• ........ With--the shock-wave. angle. known, the local Y'auh nrjuL.er marbe cua .-- -

"AEquation (7.30) and the local flow velocity V2 may be clcul .... - . - . -

It" = V=MN2 4 JT2  49.1 (7.3h)

SThe coefficient of viscosity, 112 , and the local Reynolds number RN2 'ay be Com-
puted by

* - -' 7163/2

-and

R2 ---.2.V2 lt (7.36)

respectiv6]y,
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__ The SDF computer program may be used in conjunction with in planetaty
trajectory compter programs to continue the rer'tnry of a space vehicle

_ following its arrival at close _pro.ii•ity to a p*.anet, or to determine tbe near-
planet, trajectory injection co.itiona for interplane1iery flight. Interplanetary
trajectory c.qokter programs usually consider the planets as point masseso poet-
tioned by the published ephemerides, and possessing.-raviti-tional fief veh.
may be expressed by gravitational potential functions..From these data the
resultant magnitude and direction of the gravitational field are computed at the
.posit,-on of the space vehicle. When the trajectory comee close to the surface
of a planet, the effects of the atmosphere and planet's Oblateness must be
considered and the -position and velocity relative to a polnt on the surface of
the rotating central body may be desired. For these reasons the SDF computer
'rxogrem has been designed to perform the following computations in coordination
with interplanetary computer programs.

(a) Determine the boost-phase- trajectory for a vehicle embarking upon a
space flight.

(b) Determine the re-entry and landing maneuver for a vehicle returning

from a space flight.

(c) Calculate that portion of space flie'. which is near enough to the
surrace of the central body that Lhose effects otf atmoopht..re or planet'! oblatc-
ness which -re not included ir the interplanetary trajectory computer program
-_-, be .-*n:iplered if neccssary.

These computations may bu perfor'med with either the six-degree-of-freedom or
three-degree-of-freedom point-mass options. Coordination of the two programs
is effectoad by a semiautomatic tie-in. When transferring from the SDF computer
program to the interplanetary trajectory computer program, a deck of cards is
punched which may be used to prepare the input tape for the interplanetary
computer program. The SDF computer program will accept similarly preparnd
cards when the transfer is from the interplanetary trajectory program.

The coordinate transformation required to transfer from one program to
the other is included in the SDF computer program. A derivation of the trans-
formation is giveu in Section 3.4. The computations and data input necdssary
to initialize the SDF computer program from an interplanetary trajectory
computer program are contained in Part II of this report.

Transfer from one program to another is made on an altitude criterion. The
transfer altitude specification is left to the analyst. Figures (8.1) and (8.2)
show the accelerations due to aerodynamic drag, gravitational perturbations of
the sun and moon, radiation pressure (for a vehicle loading of one slug per
square foot of radiated area), and the Earth's oblateness. At an altitude of
600,000 feet the accelerations due to airloads (in this case drag) are reduced
to the order of the perturbation accelerations produced by the sun and moon
which is approximately one part in one million.
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ue serat e ohe to effc or ollawen heI . eod t6OO6 etvh' sfr t-ranhz'isf bajr :U_ -the b~md~amm aeew'ae-y of- exsi 7 a,-I ~is on the order r.z 3 .2,xlo-4 feet per secodhdper se~aohidf 'W-B hos
tha.t the effect of Saxtb~s obl~atenesa rediees to this value at approximat-e3y

~~908000,000 feet altitude. If the inter¶planetaxy trajectory aomVQber program~
uned. has considered the effects of obJlateneas thea the l~ower altitude na-y be
used without accumulating this error.
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Tu addi.lon to te Gom taow .- ,o - ... -w
;•-• •tion -as. pr.usente in _zther sectio•ns, several ot~her cmVuted'quanttties are

optional calculations: . " .. .

(a planet - surface reference range, RD.;•,( ý--• great - circle range, Rg

'(a) down and cross range
(dI theoretical burnout velocity, Vtbeo
""(e velocity losses, Vp, VýWrav, and VD

9.1 Planet-Surface Referenced Rne - 'The total distance traveled over
the surface of the planet is computed as the integrated surface range. If the
distance traveled by the vehicle over a given portion of the trajectory i8:

ID J caV d .t (9.1)
tl

then the curvilinear planet surface referenced range is

RD = f O VR Cos dt (9-2
t! R

The flight-path angle, 7, maY be
RD •referenced to local-geocentric

coordinates or corrected for the

Trajectory difference between local geocentricSRD and local geodetic latitudes (see
_R Paragraph 5.4) for this computa-

"ti.on. When the mobion is assiotmed
to oecr over a flat, non-rotating

R Vplanet, the quantities RA and R
in Equation (9.2) are un~fined
and the surface-reference range
must be re-defined as

Rn jt2 VCos ydt (9.3)

Figure 9.1 Relation Between
Distance Along Trajectory and Sur- 9.2 Great-Circle Rxeel. -

fice-Referenced Range The great-circle distance from
t.e launch point to the instan-

taneous vehicle position, Rg, mW. also be required. Expressions for this
distance are derived as follows.

•f spherical trigonometry, (see Figure (9.2))

Cos _= 0os(90-O)Cos(90-O.) + Sin(90-OL)5in(9O-' )(Cos(G-L-0) (9.14)
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or simpiiyi-~ns
• -- .: •D ÷•• •Li -• .. . _ _ _ __•• • •. •_•_ • •

I• Therefore)

R. R Cog" [Sn OL Sin OL + Cos 'dos 0z Cor' (9.6)

"NP

Vehicle

- /

Z/

z/

Figure 9.2 Great-Circle Range

However, since the planets are generally oblate sphemotdl, PI' is not a constant
radius. An approximation may be obtained by averaging the plwnet's radius at
the launch point and at the vehicle's position. Therefore, define the average
radius, R', as

R, I~ R h + Ro• 97
2

and the surface-referenced great-circle range from the launch point to the
vehicle is
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I .. _ r _ L -.I . .... .._-

a -Sin _ _i_4]W-

F.. For the f•lat-planet opt•.on t1. rsn e from b, e.s amh- •o•.tt .'t aloQ be re-
I - defined (see explanation preceding Equation (9.3)). •ieebre .

2L , (X-X )+ (-yg._yg)2 (9.9)

9.3 Down and Cross Range - To determine at any.t the lateral distance
- from the initial great circle, an optional computation can be made in the three-

degree point mass option and In the fu.l six-degree-of-freedom trajectory over
an oblate earth. The initial great circle is defined by the initial heading at
the initial latitude and longitude. Then the crossrange of a particular

trajectory point is dcfined as the perpendicular distance from the point to theI initial great circle. The downrange is then the distance along thn in_ Inial great
I circle from the initial point to the point at which the crosarange is measured.

From the spherical triangle, Figure 9.3, the &reat circle range, LF, to the
•point F, is computed by ERquattion (9.8). The heading, ý , of tL-hi great circle

at the initial point is cozrputed from the spherical triangle, L-N-F.

sin (.,- G) Cos Aco (9.10)
tanS i sin L =in - Cos L1

'J'be right sphericai. triangle LMF ic then solved for the dowarnge, Xr, and the
cýroBsrange; 'D YD'

X R: c-1 Cos IF (-aD Cos (sin-l ( sin LF sin 9))

Y li' sin"I (sin Lp. sin •) (9.12)

whcre

0
H' is defined by Equation (9.7)
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..- irnitial

SGreat Circle

I 9 L0

S..LF 
= Great Circle

Range, R ,
[] / ir•itiali / point L to

point F.

FiL1ir't: 9.3 Downrange and rGro~qsrange Ok.ometry

9.4 Theoretical Dmrnout Velocity and lossea. - For trajectory and performrance
optimizadloa studisc it is convenient to know the theoretical burnout velocity
possible and the velocity loscs due to gravity, aerodynaeWiL drag, and atmospheric
back pressure upon the engine nozzle. These qaantities may be computcd ws follows:

Theoret2mcal Velocity

IV t2
Vtheo f -a

VelocIty Loss Due To Gravity

Vgrav = f "z Sin YD dt (9.14)
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= ~Va~looI,,!y 14ss W)~e to Ae1'oaudaysr

1 3 t2f D
dt

U Velocity Loss flie to AbmosplhtýicI -)3cj PressurEe pnTe Engine No1,ZZle1

VpIAe dt (.6

The resultant velocit',yV is Obtained by addiw~ the conponients. complito'1 ;

VI Vto + V v + V (.7

ILuld ;ohould Compare clc)-Qiy to thu- surfacc.-rei'erencce. speed, V,., obaic from the
rýIujectov'y cuoirputatioii, wtild zmiy initial. speed is incic:Ldod in uýthc theoretical

Velocity.
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Beginning a calculation with the generalized computer program requires
not only the introduction of certain Initial conditions and the necessary
tabular values of the vehicle characteristics but also special machine compu-
tations to prepare the initial con(Ittions data for zuse in the zubc-,r.quenrt
solution. The initial conditions as introduced by the analyst must be in a

form which are readily available and not redundant.

Initial data which must be specified for every computation is of three

types: (1) identification (remarks, case number, seeuA~ty classification,
stage); (2) integration (integration time interval, integration method,
print interval, initial time); and (3) aiunospheric and gravitational refer-
ence data. In addition, the position, velocity, and vehicle attitude and
angular rates must be specified. Hoever, the form of this data is dependent
upon the option calculation being miade. For the convenience of the analyst
certain nuxi 1 nrny calculations can also be made if specified by input data.
Because of the multiple possibilities available, a detailed listing of the
input data iu contained in the User's Manual. To simplify the preparation
of the data cards, nominal values have been assigned to all input data except
that which requires symbolic names as data and for tabular listings. TheI comiiputational flow diagrams of the various calculations arc also cortaineA
in the User' r. Manual.

i6o



11. MiE-"RXSE OPrfION

A reverse option of computation is incorporateA" into the SDF computer progrs.m
whereby known trajectory and motion information may be introduced into the program
to compute unknown aerodynamic forces and moments.

11.1 Trajectory Data from Fixed Radar Station and Measured Body Rates. - The
Six-Degree-of-Freedom reverse-option program computation wequence is constructed
as follows: Considering first the method to be used when the trajectory position
data are referenced to a fixed radar station, the data are assumed to be in terms
of a Cartesian coordinate system criented at some poirt on the earth. Signify
these data by x., y., zm, and xq, YM, qfd im for position and velocity, respecU-
ively. The origin of this system is located at the longitude of the radar refer-
ence point, (which is also the initial longitude of -the inertial X-axis), at the
geocentric latitude of the radar reference point, a at an altitude, ho, above
the reference ellipsoid.

The geocentric latitude of the location of the origin of the measured data
(,Lol, the altitude of the origin above the reference ellipsoid (ho), and the
azimuth angle (A) of the x.-aXis are specified for the problem, Figure 11.L
Neyxt the ctlculatio'n 'ýf the inertial-exis position of the origin of the measured
data is made. The analysis of Section 5.4 discusses the acceptable approximation
that the geocentric altitude is equal to the geodetic altitude, ho. Preparatory
to the transformation of the measured trajectory data from the earth-reference
axes system to the inertial coordinate system, the a-b-c set of direction cosines
are computed. The transformation matrix which orients a platform axes to the
inertial axes (see Section 3.2) is directly applicable to the required transfor-
mation providing the inertial angle B is set equal to - Wpt. The measured posi-
tion and linear velneity data (or specified data, if the reverse program is being
used an a design problem) are introduced in the earth-referenced coordinates and
transformed to inertial coordinates.

This completes the portion of the solution sequence peculiar to the use of
artt-- re.ncc trajectory data auch as radar data. The measured inertial cowpo-

nents of position and velocity, referenced to the inertial coordinate system,
are the standard form required for all methods o&- operating the present reverse-
option program. Alternate methods of operation are discussed in Paragraph 11.2.

Since the equations of motion, of necessity, are solved in a body-axes
coordinate system, the inertial components of inertial velodity must be tranB-
formed to body components of Inertial velocity. This transformation is made by
the 1-m-n set of direction cosines, see Section 3.1. (This transformation matrix
Is computed by two methods depending upon whether the problem is being computed the
first time or has been running for several steps. in the discussionwhich follovs,
it will be assumed that the problem is being initialized. The solution sequence
vill lend to the alternate procedure through the tmie up-dating technique.) The
geoccntric latitude and longitude are cot pu•" tlon? -f4th the radial position
fromn the center of the planet and the inertial angle B. The i-j-k direc.u1n
2:ozines, which transform quantities in local-geocentric-horimon coordinates i;c
inctacoi.a, arc computed for subsequent use.



The measured body angular rates are introduced. From here t-he problem
proceeds along the sequence marked "first time orly". The initial values of

,, 0, ?M& 0 are introduced, from which the d-e-f set of direction cosines axe
computed, see Section 3.2. The required initial values of the 1-m-n direction
cosines, the original measured trajectory information is transformed from the
inertial components to the required body-axes components.

This completes the first initializing pass through the problem, having
obtained the initial body angular rates, _p-, c, n e; aeid the body components
of velocity, un, Vm, and wm. The problem leads through the up-dating operation
and thence for the second time through the computation for B up to the computa-
tion of the !-P-n direction cosines. The 1-m--- set of direction cosines are now
obtained allowing transformation to body components of velocity to be rzade an=
goes through the up-dating loop a second time. The third cycle is identical to
the secon- cyncle through the calculation of the body-axes ecamponent. The body
components of acceleration at point (n-l), using the average slope between the
n-2 and n data points, are then computed. To allow this computation to-proceed
requires the n-2 poi!nt, which was the reason for the initializiLng pase• tb-ough
the fir-t part of the problem. It should be noted, then, that. the subsequent
computation •ipTiea to the (--1) or proceeding, tI--e step.

The measuared .ind data are introduced into the computation, transferred to
inertial wind components, and thence to body components. The airspeed is computed
by the normal definition (e.g., see Sect',.on 3.3).

The gravitation terms are computed and transformed to body-axes components. The
measured atmospheric properties, or the standard values, are introduced. Mach num-
ber and reference dynamic pressure are computed. Other forces and moments, given
an functions of time. in body coordinates, are introduced together vith the vehicle
physical date..

This leads the problem sequence to the equations of motion, which solves for
t.e forces and moments using the body components of acceleration, velocity, and
angular rates obtained from the preceeding analysis. These forces and moments are
reduced to the aerodynamic coefficients, CA, Cy, CN, C'. Cm, and Cn. After compu-
ting the angles of attack and sideslip, the sequence again up-dates the time and
otarts the program solution of the next known point.

-l.2 AlternaMe .ethods of Data input and Solution. - Several alternate methods
of operating the reverse program option may be devised depending upon the trajectory
information which is available. Some of these techniques are considered in the
following para~ranhs. It should be noted, however, that only the formulation of
Section 11.1 has been prepared in the computer progra.

When measvred acceleration data, obtained from accelerometers mounted on an
inertial p'atfo= oriented to the •l..anchl point vertical and flight azimuth, are
used in pldce of measured radar dr-#.a. the computations indicated in Figure U-1 would
be replaced. llie alternate computation woulI ._-- -4+' 1-=- -ri+at.t! of t

inertial platform, the initial conditions, and proceed to the main sequence the
first-time through. The problem re-enters the acceleration sequence where the
trajeetorv anceleration data are stored. Resolving the measured acceleration
dmLa, to inertial a•es '-ta .d...bt tn .... +Innt oi- +o gra.t....,t nv +1.-

inertial acceleration. Integrate at time steps equal to the time intervals of
the measured dea 8nd the solutio-:_ ce•...n.e rýontinucs z before.

i-6-



Other methods n• operating the reverse option prcgram coule employ posi-
tion data obtained from radAr- observations and the linear velocitiee from
platform mounted accelerometers. In this case parts of both of the data input
programs discussed above would be used to introduce the known trajectory. Ai-o
accelerometer data may be introduced from an inertial platform which has been
torqued accordingto a particular program. In this case the torquing program
would be incorporated along with the coordinate tra-zfor=-. _io=, see Section 3.2.
In some cases measured body inertial angular rates (p, q r) may not be avail-
able. An alternate method of introducing the requirerdorientation would be to
obzervp the Euler angles of the body from photographic records ag a function of

time and differentiate to get th . QV -and - - . ... b

from an inertial platform, in which case the information reqaured to compute
l-m-a set of direction cosines is available directly.

11.3 Non-Rotati!g Body Axes Coordinate System - The aerodynamic coefficients
(Section 11.1) are referenced to a rotating body-axes coordinate system. However,
if the body is rolling as a function of t~.me and an incorrectly measured roll
rate, p, is ,ue;!, the a °tti.tudte and consequently, aerodynamic forces compu-
ted on the rolling vehicle. ,: bc in error. The coefficient of the force which
is actually sutpporting ti" :.l: o ay be continuing in a well behaved fashion
and may be quite accurate. ::i:•;.h follocring simple coordinate treanformation
converts all the force coefficieiotc -,o a non-rotating body axes coordinate syz-
tern which removes errors in the roll attitude of the vehicle. Errors in pitch
and yaw do not introduce the type of errors noted above and hence are not consi-
dered in the present transformation.

Assuming a yaw-pitch-roll rotation sequence to define the local-geocentric-
rffercua.ed body V','er angles yj -Q0-, respectively, the roll angle may be deter-
m-ined from

tan ml i3 + m2 j 3 + m3 k3
h! iq + n2j3 + nk 3  (.)

The valhe ,c~ Mn ~n- Y,2 ± i~ j - and k .re *abalabe at the appo
priate timeoi in fthe bro~iem krom'th'l- -n eAd the i-j-k direction cosines. The
derivation of Equation (11.1) is obtained according to the procedure outlined
in Sect!io.n 3.2-3, and 3.2.4. The force coefficients will be transformed
as follows:

U , = CA
CY C YCos + CN vin

I CNv C COS Cy sin0

CA / or in matrix form (11.2)

77 C. rC o 0 1 Pc.S 1

0 0
_1 10.~j cos~ sin 0tC__

Ixcal Geoctntric
.Sest Available Copy



The moment coefficients are trana--o-ed' by

Cv r C
C2111 [CM1

L -

where [ is the transformation matrix &Pfinef in Equation (11.2). T-he

aerodynamic angles, OC, and ýdv- are consistent with transformed aerodynamic

force and moment coefficients, ana are defined as follows:

ta~n CXV an tan (V-Vt)v
(u-us) (---•

since (u-u.)

The required velocity components are calculated by

F(U-u0~v F u-uV

(v-vv)v. (~)

1. V -. :,)v O(I.5)

The functional flow diagram for the coordinate transformation is shown in
Figure 11.1.

!1.4 Uiitat'n on Reverse Cption - There are severa! asn÷*_ o'f the
reverse program option which should be noted since they limit the applicability
of the method.

(a) The reverse-program option may be generally applied only to the six-
deoree-of-freedo= anlysi~s, The three -degree-of-freedom lo----tuditucn navy
be considered, but analysis ist restricted to motion in the planet's equatorial
pla-ne or to a non-rotating spherical planet. Reverse options could be set up
using other equations of motion, hoveyer under some conditions (e.g., the point
mass trajectory analysis with thrust forces) the normal trajectory information
tvvdlable is insufficient for a reverse option solution.

S~All_ input data shovld be corrected for zero shift, instrument error,
etc., and should be smooth. The smoothing of the data must actually portray the
jas.h.k• o, ...C vehw c Smoothin flight-test data by a least squares method or
direct polynomin&l fit might not be adequate, and further smoothing by inspec--
tion or by more powerful mathematical methods may be required. The aerodynamlc
force data obtained will, of coursu he only as goodA- as the trajectory data
I ntroduced.

"(c) The radar data coordinate system orientation on the earth (usua-l
1zaunch point) is required. The p-o-__-+ve -° axis will be measured along

.no tirtng azimuth, the positive z. axis down ilong the '_,-eOce.tric r . ...
½he positive ym axis will be measured to the right to make a right-hand Carte-
sian system.
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(d) The body angular rates, pw, q%, r., should be Obtained by direct
measurement.

(e) All da4A other than aerodynamic forces and moments required in the
equations of motion should be given. This includes the mass and inertia
characteristics, and engine forces and moments.

11.5 Aerodynmic Derivatives - The aerodynamic coefficients computed by
the reverse option are related to the aerody-aamic derivatives. One method of
determining the relationship between several independent variables and a depen-
dent variable is the multiple regression technique:, Reference ( 27 ). Section
7.3; Reference (28 1, Section 37.3; and Heference ( 29 ). If the aerodynamic
coefficients are assumed to be summations oZ the products of independent varn-
ablee and the correspobding aerodynamic derivatives, then the aerodynamic equa-
tions as shown in Table I mRy be written in the form-

Y'v - Co + clI + c2xe - ... + CiXi ... + Ckx(i.6)

where:
Y' denotes the dependent variable as computed from Eq. (11.61)
Xi denotes the independent variable
Ci denotes the corresponding aerodynamic derivative
Y denotes the measured dependent variable (aerodynamic coefficient)
subscript v denotes the index of the set of values (v - 1,2y .... n)
subacript i denotes the particular independent variable (i - 1,2, .... k)
subscript J denotes an independent variable different from i

The solution of thiz type of equation is done by the method of least squares,
Reference ( 27 ), p. 130. The maximum likelihood estimates of the constants,
Ci, are the values which minimize the sum of the squares of the residuals,

n
n (Yv - Yv)2 'where the regression equation is evaluated
v=-l
in the form:

V= +/ += . ...+ x, x(

where:

Xiv Xiv -
S= i n

V=l

T-e coerricients of equation 11.7. are related to the original Be•rodyna&;ic

derivatives of equation 11.6:

,. (ii.8)
Ci J

Ibe rmxImum likelihood estimates, denoted by &u azteri-k, are drtcrmined
by the solution of the nor•mal equations, Reference ( 27 ), p. 131, or by
Crsmfr'Ls Rule, Reference ( 2f ), p. 552..
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._1 k

where:
11n

11j n /- xiv xjv

v=-

Yv = YV mni

= Ik ... ikk

,,= cofactor of I ,) + i minorij~ I
"•minorij is formed by

- itriking out the. 4 row

and J column of the L

determinant

.xe desired aerodynamic derivatives are obtained by evaluating equation 11.8
with the results of equation 11.9.

The standard deviation, s, of the cuarve-fit is dekined (Reference 28,Eq. 37.3.3):

9 = (ZV)2 (1.0
n 1v~4

where :

•," = -Y'v) = residua!L

11.5.1 Superfluous Terms - The form of the regression curve, equation 11.6,
,munt be known to compute the aero4ynamic derivatives. The aerodynamic equa-
Liofns presented in Table I are the equatonz used in the basic SDF program.
)Iowevexr, sowe of the power terms and cross-coupLing terms are Dot necessary
:or p•_tic"lr -e~yr1c configuarations. Thus, for simplicity, this computer

S•,)rog= has b11ee jýle~t& ÷ use the linear 6 -ms plus those other terms
'•€,i]6by- the •ua ].a-yst t'o-- pn••'•• ,')• •. .. •Vl •"]rc•T.. ..

p1.iciSy, 1t is necessary Lu a0d t� ther i- b'- ck-a; !4e. : the rate terms,
2he square te.ms, the cross-coupled terms and the center of g•'rity terms.

k tbh event of doubt of tho n'cd for a specilfic boiOck of ter-m•, an atnalysis

p. 403. The data mist bG fitted twice: (1) by tVin regression u t._
.+'Tth," the a~dt•n~i t==2Ij ,)^-j the- adoitrionai -75'r,"

t ~.rt~ ~ he b btin~frc h pua-~



mean sauare of additional variance due to added terms
mean square of variation around regression with added terms

7 ý- i=l I__ iYl Xiv L-I Y, .....

1-i-L v-l L -

where: m-k = number of added terms

Comparison of the F-ratio with a F-ratio distribution, Reference ( 29 ),
Table 23.5, provides a test of the probability that the added terms provide
a significantly better fit of the data than the initial regression equation.
The numerator has m-k degrees of freedom and the denominator has n-m-1
degrees of freedom. The computation of the F-ratio is included in the com-
puter prog-ramm .-a an optional feature. The significance is then left to the
analyst to determine. If the computed F-ratio is larger than the tabular
distribution, then the probability is less -than 1 percent (or 5 percent) that
the regression of yield upon the additional termas in the universe were really
zero. Or, more simply, if the computed F-ratio is greater than the tabulated
distribution, the additional terms provide a significantly better representa-
tion of Lhe relationship between the aerodynamic coefficients and the aerodynamic
derivatives than tihe reduced equation.

11.5.2 Autocorrelation - To determine if a trend in the data exists which i!
gradually shifting the mean the mean square successive difference, S`, is
compared tc the variance, sk, of the data including the effect of the trend,
Referfnc2 30 . This ratio is computed:

2 n- 26 (z-vl - zv)2
s2 v=!,¢ .

52 2
1 •. Zv

The computed value, 2/1s,2, is then compared to a significance table for

Von Neumann's ratio• Refer c ( 29 ; Table 2-0.5; for a t c l.r p o a i
lity, chosen here as 5 percqnt. AE- an example; if n (number of observ-ationz In
the sample) - 18, the 621184 nust fall between K= -i.34-05 and K' = 2.8948

to reject the hypothesis that the residuials are significantly autocorrelatedo
if th•Ae com.puted -atalo+ is less than the criticsal value, K, it is indicative
of Dositive autocorrelation. For flight test data, this might mean, for example,
tha t the Ma•ch :f.Cect on t•h• aerodJ- i eri :ti. 1z i=apprei-~ •ti h
sample. 'Me apparent solution t0ado su' -.--! .q+tustlon ip to divide
the original- sample :nto two sampler. with differeriL mean values, and repeat the
_;o,ýputatiuns of thle ae•rodynamic derlvatives and Von Neumann's ratio for the
smaller samples. This subdivision ul' the sample cannot be continued when the num-
ber, n, of observations in the sample becomes so small that the degrees of freedom
rceduce below one., and shouldx not alppropch this limit too closely since the confi-

U xncciervul, of 1i basic calculationsvt~ b:cobme eXess'e l ,g•-ý

6_Ck:
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n Ž k+2 (11.13)

For the convenience of the analyst, the computer program will prcvide
alternate choices for the selection of the initial sampple size, i.e.,
(1) Mach segment; pre-selected Mach segments by the analyst or k2) max±-
mum fixed sample size.

11.5.3 Confidence Limits - The confidence interval on an individual aerodynamic
derivative can be obtained in the following manner, Reference - ,, c. ok .2-

r - *. i -A 'Al
s

where t is the value of the Student's t distribution, Reference 28,
Table 4, -ith n-k-l degrees of freedom for a specified confidence
coefficient.

From Eq. 37.3.4, Reference ( 28 ):
2 L2

Si2 = (11.15)
Lii

Thus by oubstitut0ion of Equatinýo. li_-5 and 11.10 i•nto Equation 11.14 and
rearranging, the confidence interval may be evaluated in the following relation-
ship:

.* ta - t*- sKY•'s 1.6i*+ 7n-£-ins /te

11.5.4• Multiple Correlation - The coefficient of _-ultiple correlation (Rt)
indicates the de ree of the variance of the dependent variable that i' ;-.!aivned
by the k terms of the regression equation. A value of one for the coefficient
would denote perfect correlation of all the independent variables with the
estimated valhes.

Coefficient of multiple correlations, Reference ( 29 ), p. 191:

2 n /4* n nRy2 •j • vxv) "(- Yv x2v) + +' +ýk.* (-Yv Xkv)

v== v=-1
n SYv
v=l (11.17)

A t)u-ictional flow crh-t of the aerodynamic derivetives computations is
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AMPNDICS!=

Appendices One through Seven have been added to this report Iiz-ffdjr that
a certain amount of detail may be included for particular portlonws oC thg prQ'k-
lem formulation without interrupting the overall development being considered.
The folloving topics are discussed in the appendices which follouw.

SAppendix One Derivation of Jet Damping Force and Moments

Appendix Two Rotating Machinery Terms in the Equations of Motion

Appendix Three An Orthogonality Constraint

Appundix Four A Method of Including Aerothermoelasticity

Appendix Five The Method of Converting Complex Transfer
FuIIction3 to Real-Time Differend al Equations

Appendix •±ix A Second-O-,rder Simulation of the Effectr of
Aeroelasticity on Autopilot Behavior

Appendix Seven Geophysical and Engineering Constants for
the Six-Degree-of-Freedom Flight-Path Study
Compriter Program.
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AITITPXX

|4

DiO • .AVATION ' j-.ir.I . . -OF

Introduotion - This appendix presents -the .derivatiDn .7f• _xqj.on.:C.r the
jet-damping--orc-es and moments causmi by .the expe-ling ol' the burnt- 4n!il under
conditions of angular rotation (Reterences (One-X), .(orAeýa) ,. znd. .On . Thc,
equat~onu derived are applicable to u rocket, ram-jet, or turbojet engine.
However, the contributions derived for a ran-jet or turbo-jet are only part of
the engine flow forces since the change in momentum of the air flow, in addition
to the fuel flow, must be considered. This contribution is assumed here to be
accounted for in the aerodynamics of the body,

The equations are derived for a vehicl.e symmetrical about the x..z plane
' with motion restricted to this plane. The••. e...... ...

consideration or motion in the horizontal planp using the same assumpgtioas.
This neglects the cross-coupling terms between plasea, but f:Ln.e"7- the jet-damping
terms arc smell correction.ý. to the general cruiations of motion, The omission or
these effects is considered permi.spAble in vi ,w of the compli.Lp± on required. for

Jet Damping Force -• A E.)artic.le or fuel A'ylwthin the iifsil.e is e.jected

out the nozzle in At timt (reference Figure (i)),

xI-I

C.G.

Figure 1 - Body Geometry for
Thrusting Rocket
With Changing Mass

The increment of force in the x direction is:

where Xp is the distance from the center of gravity to the paxticle AT(. This
force is the thrust term which is considered on the left side of the equations
in the sum of the forces, and hence need not be considered here.
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The increment of force in the z-directlon due to the motion Qf a•• L
particle of fuel Isi

bFzD -2Axp q - 4 (I. x)

which is obtained from the general expreosion for acceleration, E, pation (2.,).
given in Section 2 of this report by assuming the particle of fuel travels only
in the x-directiQn and the motion of the body is restricted to the x-plane.Summing over the tote! - rticles ejected

S J
Since xp q will be large compared tox p q only the first term in the above

Sequation will be retained.. Now writing Ar a

we have
ehv = -2q f f px dA dx_ 

(1.5)xf Af P V

Assume all particles at a given xp are moving at the sawe velocity and have
the same density so that

FZD = -2q fP A xp dX p (1.6)

Also .ssume that fl. p.rtielO. being Pxp&I1 rl nri.nin.te frr.n the 5.amp point in
the body (say i) iY j so that

pA Xp Yvt(T..7)

Then 12

-2ZD4 dxFzD p
ii

or

ZD -q ) ( ( 8)

(1) For solid-propellant radially-burning rockets, 11 coincides with the
center of gravity of the propellant grain. For end-burning rockets 11 is a
variable with LIwe bUing the lueation of the reacting surface. For licuid
propellant rockets, 11 may be approximated as the location of the propellant
free-surface coenter of area in the tank where a weighted average of fuel and
oxidizer locations must be used.
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j leaving Ule baYto t4 1... ft.oy .a t

with time. Also the distaces assocatd w-sh x
aft of the center of gravity and the effective t ce traveled by the part~i-

* cles is designated lz representing a characteristic distance. The term to add
I L to the Fz term due to jet damping is therefore

FD= 2 A q lz (1.9)

I is the rate of change of mass of the body and 13 is a characteristic distance
perpendicular to the z-axis along the x-axis, negative if extending aft of the
center of gravity. In most cases, the change in mass will be the fuel flow and,
from the definition of the vehicle mass given in Section 8.2.

* ~~dt (.0

Using the same analysis in the yaw plane, the Jet damping term becomes;

FYD = -2 7 .rly (I.11)
P

7A is the rate of change of mass of the body and ly is the characteristic
distance perpendicular to the y-axis, along the x-axis, negative if extending
aft of the center of gruvity.

Jet Damping Moment - Assume that the missile is pitching about the instan.-
taneous center of gravity. The' wumIut. of the incremental force 6FzD described

Making the same assumptions and following the same general development as used
to determine the jet-damping force gives

M = - ( - Lml) (1.13)

Similarly for jet damping about the yaw and roll axes, the moments are

LD . 2 2

* 2 12
ND = - " 1( 2 - n r

Let
2 2I1 2

112 1 i1

2 2
1 - Iml -

in2 n- n

wher 11, 1in, and in are consirlered characteristic Oistante:i ,-:
retained as an aid to identificaetior., The substitutA.n is smdr,
machine storage upace.
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AP~IMZIf 11

RO~TXNMAEIN1R TEM8IN-THE 1U ~ONS OF NTO

L This appendix presents a derivation of the moment contributions due to

the gyroscopic effects of rotating machinery aboard the flight vehicle. An

accounting of such moments, in completely general terms) is exceedingly corn-

plicated end lengthy such that a number of simplifying restrictions are
eaLirely Justified. For this reason the principal gyoscopic momehUte .Vhich
will arise for several types of rotating machinery are derived here with an

explanation of the approximations made. The three types of vehicles to which

this derivation is applicable are:

(1) A conventional turbojet or propeller driven airuraft.

(2) A convertiplane in which the engine or propeller is rotated during

transition from vertical to forward flight (or vice versa).

(3) A satellite in ,40,rl ,owtors are being started and stopped (by proper

selection of coordinate systems).

The general derivation of the rotating-machi:n'ry c-ntributi.ons is outlined for

reference should a particular future application require iiL;J.ui(iA U& Lt-Aiý

omitted in the present application.

Yigb.re (1) aid. in LnW d-Iuuiition -,tf thc rotating machinery axes system.

-Xr

( ~rI

r __ /

rigure i .... . e-MA"...A... System



w_ Let the axes system of the rotating machln"V- be. -deegimaed as -
whore Xr is along the shaft and Yrp zr are P pe.!•dg9ua- to x. in a nor-a.
right-handed manner so that Yr erossed- into zr describes a positive rotation
vector in the .positive xr-direction. The shaft is canted with respect to the
body x-axes at an angle *r in the x-y plane and pitched at an angle Or which is

-permadicular to the body x-y plane. A positive *r rotation is clockwise when
vie'ied in the positive z-direction. Positive Or rotation is nose up. The
angle 0• is the rotation angle of the shaft and is equal to

Or f rdt

where wr is the rotation rate of the shaft.

In matrix notation (see References (Two-l) und (Two-2)) the coordinate
transformation from the body axes to the rotating-machinery axes is:

Xr X

Yr = O r I r *r Y (II.la)

zr z

or, transforming from the machinery ares bruck to tUe body axes

x Xr

Kr H~ ~ yr (II. ib)7. zr

z -

Moments in the body-e:-es system due to moments in the rotating-rachinury

axes system can be expressed as:

L Ir

.Vr -or Mri (11.2)

IN NrIn

However, moments of the engine Lr, Mr, and NT are functions of the total shaft
rates, pl., qr, an6 rr and their derivatives p1r, qr, rr.

The total shaft rate.• are functions of the body rates, votational speed of
the shaft, and rotation of the shaft axeu system with respect to the body. The
rotation is

"I1



p -p Q Sinl,,

= ~ ~ - 1+1 IGIrI~' qQCosI08u

rr 0 r +

The components, L, M, and N due to the rotating machinery can be obtained by
substituting the expressions for Pr, qr, rr, Pr, qr, and rr into the general
equations for Lr, Mr, and Nr and then performing Lhe indicaded coordinate
transformation Into the body axes. However, this procedure can be simplified
somewhat by an examination of the physical situation. Any machinery which has
a moment of momentum which is large enough to produce significant gyroscopic
moments will probably be dynamically balan'7ed qnd. the products of inertia will
be zero. The motor or engine shaft will have a fixed mass and goumetry so that
all. time rate of change of inertia termm will also be zero. Due to the symmetry
of the rotating mass the inertias Iyr and Izr will be equal. Further, because
-f thC rc•trot. nv•q of t.he bearing avstem the rotation of the shaft in the
machinery axes will all occur about the xr axes as noted in the coordinate
transformation above. With these simplifications the contributions of the
rotating machinery are:

Lr = Ixr Pr

Mr = ly-r jr + (Ixr - Izr) Prrr (II.4)

Nr - Izr rr + (Iy, - ]'xr) Prqr

Ixr, lyr, V'"d Izr ar: momeiLLb of incxtia in the Xr: Yr; and z..-axcs. The

mowents in the body axes due to the rotating machinery are:

L = Lr COB Or Cos 4 (r + Mr(Sin Or Si6 6r Co0 4*r - Cos Or Sin *r)

+ Nr(COS Or Sin 9z cOn .r + Sin Or Sin *r)

M = Lr Cos Gr Sin *r + Mr(Sin Or Sin Gr Sin *r + Cos Or CUB s ) (II.*5)

+ Nr(CoB Or Sin @r Sin Silr - O 0 r Co-, *r)

N = Lr Sill gr + Mr. Sin Or COs Or Nr Cos 0, COs @r

Expanding Equation (11.3) for the total turning rates of the rotating machinery
gives

Pr wr + P CuO Or Cos *r + q Cos Or Sin #r - (r + ýr) Sin Or

qr = (P Cos *r + q 3in *r) Sin 9 r Sin Pr + kq Cos gr - p Sin Wr) Cos Or

+ 6r Cos Or + (r + *r) Sin Or Cos Or

rr = (p Cos *r + q Sin *r) Cos Or Sin @r + (r Sin 'r - q Cos *r) Sin Or

r r A (A r ,- er -- ,
- dr A -- -- (TT. A)



the relative magnitudes of the several terma. In general tbe cat a•gle tx. is
very sma• l and, except for some problems in dynamic awxQ••At±i-ity where theMff-_ geometry of the aircraft is not fixed, the rate of turning, Tr, i± zero. The
present analysis will assume that tr and its derivatives are zero, The 9r-
terms have been retained to account for the moments generated by a converti-MW plane during transition from vertical to forward flight (or vice versa). Also,
the rotational rate of the machinery will be much greater than the body rates
p, q, and r. Within the limitations of these assumptions, the following

*: expressions for the rotational rates are obtained. It should be noted that the
relative magnitudc of qr and rr is much smaller than Pr. Therefore, to obtain
reasonable approximations for these rates requires the retention of terms which
are negliglbie for Pr.

Pr a(,r

qr ` P Sin Or Sin Or + (q + ýr) Cos Or + r Sin Or Cos Or (11.7)

rr I p Cos Or Sin @r - (q + 6r) Sin Or + r C os O r

The derivatives of the total rotational rates Pr, qr, and rr are also
required. The Equation (11.6) should be used for this operation. The dleriva-
tives are presented assuming *r and its derivatives to be zero.

Pr = r"PCOD r P ,r Sin r - in r - r @r COS @r

qr= P r Sin rr ' Or (1 4r + jin 0r Cub @r + ( - V Qr)Cii 9r UL r

-(q + r 9or Sif9r + (t + %r) Cos Or + r Or Cos ,r Cos Or
(II.8)

r"r ="P Or Sin 9 r Sin Or + (P ýr + r) Cos Or Cos 0r + ( r - rCos Or

- (q + Co - + 0r) Sin Or - r 94 Cos 9 r Sin or

However, 0 r is w0r and by the same reasoning which resulted in the simplifica-
tion of Equation Set TT.6 t- Equation Set 11.7, the differentials are
reasonably approximated by

Pr +r P COS Or - p r Sin Or SSin Or - rýr Cos Or

_r-4)r Sin gr Cos 9r - (q + O-) L°r Sin )r + r wr COS or Cos or
;r - -" w- Sin r Bill ,r -(q + -r) r cs 6 + ....r Co-s 9 .sin M

(11.9)

The moments if the mdchinery axes are obtained by substituting Equatt.ons (1,.7)
and (11.9) into Equation (11.4)

Lr = Ixr (r PCos @r - P Or Sin @r rSin@rr9rCosG @r)
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Mr ," I ~wr Sin Or COO -Or .( r ~ O ~

;+ (IXr Izr) wr P COB 0  sr.n r-(q+ )-Sih Or , o- -.

SNr = Izr .- WrSl rSnO (-+L)w ,0 Or-rrCBO i
S+ -Sin Or + r Si nO• Cs 9

Yr- Ixr) wr I p Si r + (qc + 60 Cos Or Si rCo

Substituting the expressions of Equation (II.10) into the coordinate transfor-
mation of Equation (11.5), the moments L, M, and N are obtained.

* L = Ixr(r + p COB r " PrBSin 9r0r Si rr Cosr)CoQ

+ iyr WP wr COs Or Sin2 or Sin Or -(q + 6 r) wr Sin2 Or Sin Or

+ r wr CoB Or Cos Or Sin Or Sill 9r +(IxrI.zr) wV[Cos Or Sin2 Or SinOr
- (•. r) Sin2 •r Sin 0r + r Coo •r Coo 0r sin •r Si rr]1

+( zrý )r Sin rS~n2 •rCoo $r (Si+n r) o C r Si n r

-rwr Sin Or Cos Or Cos Or Sin On + (Iyr - Ixr) : .f Si 5Th n r r
# r ]

(q + 4r) C0s2 Or Sin Or + r Sin Or COB Or COB Or Sin @r]

As noter, earl iP, Ithe inertias lyr and I.r will be assumed to be equal, therefore

L Ixr(wr + P Cos Or - P Or Sin Or - r Sin WI - r Or Cos Or) Cos Or

"TAr Wr (q + Or) Sin @r

and similsrly for M, and N

M = Ixr OIr (P Sin lr + r Cos Qr) ((I.I)
N =t-Ixr (4r + P CoB Or - P Zr Sin Qr - r Sin Or - r 0r Cos Qz') Sin 0 r

"Ixr (q + ;r) wr C08 @r

The predominate terms of this contribution are:

L = -Ixr wr (q + ;r) Sin Or

M = Ixr wr (p Sin 0r + r Cos Or)

N = -Ixr (q + 6r) Wr Cou Qr

and are the terms normally considered for the types of aircraft considered in
the present derivation. These contributions are programmed into the SDF com-
puter program for normal operation. The derivation of the lesser terms hea

..n.di.cated, however, and may be extended in greater degrees of sophislica-
tion by the user should the particular appuluuU-iu .. qa.uii-e t--•.m
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A ORHOGONAL1Q•'UIONSWA-W"

Sintroduction -The direction consl~nes relating body coordinates and inertial
• coordinates will be evaluated by solving the nine simultaneous differential equa-

S~tions noted in Equation (3.12), Section 3.1. The numeric al integr~tion of
Equation (3.12) will produce errors in the resultant direction cosines which inI•_ turn will cause the resolved components of a g.iven vector to be non-orthogonal.
This appendiw presents the constraint equations that may be used to improve the
orthogonality of the transformation between body and inertial coordinates. The
results of a digital computer study, designed to evaluate the constraint equa-
tions, are also presented. The constraints developed in the following analysis
were suggested by the memorandum of Reference (Three-l).

Computation of the Direction Cosines - The direction cosincs to be considered
relate body and inertial coordinates and :-re defined by Equation (3.1) from
Section 3.1.

X 1l mi' nl x

z i3 m3 n3 z
I~3 3

The direction cosines i" E~quation (i1.1) gire given by the solution of the
follaving nine cimultancouo diffcrontial cquati,)nz (zcc i"quation(.2), L;•. .. .
3.1 for derivation).

I = •[- n

i2 = rm, -q

13 = rm3 - qn 3

5I , - r_1

=& pfl2 iiý(11.2

&3  = Pn 3 " r1 3

n, = q1l - pm1

ý2 = q12 - P-12

f3 = q3 - Pm3

Let the mntrix of direction cosines evaluated at a given time, by the numerical
integration of Equation (3.12), be defined as the A, matrix;
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A A 1-2c c . . ..... ..

. 13c m3c n'c

T 'he true orthogonal matrjx of direction cosines at the swie time will be
defined as the A matrix;

11 m1  n1

A 12 we n2 (rI'I•A)

13 m3 n3

Since A is orthogonal, the value of A, as a determinant, is unity, and each
term in A Is equal to its cofactor. For example,

MI = 1 3n2 - 12n3

Constraint Equations - A me-thod of preventing divergenee in the numermcal
integration of the nine direction cosine rates will be developed. Only errors
that tend to cause divergence will be considered. It is assumed that a constant
error, C* is introduced at every time step such that each direction uuosie -.i
modified by 1 + a, thus

Ac = ( + u) A (111.5)

Tt t-t1 'ho nhnwn that this type of error way be greutly diminished by averaging
thp matrix of calculated direction cosines with the transposed inverse of the
matrix of calculated direction cosines.

The inverse of the computed matrix, Ac, is equal to the reciprocal of the
determinant of Ac times the tran:posed cofactors of Act Recalling that each
term in the orthogonal A matrix is equal to its cofactor dud that the determinant
of A is unity, the Iv•ep'su of Ac is written from Equation (111.5)

AjI =i AT (111.6)
l+a

where the superscript -I indicates thp inverse of a matrix and the subscript T
denotes the transpose of a matrix. For a << I the Maclaurin serics Qxponion
of I/(1 + a) converges rapidly, and termg of order two and higher may be neglected.

1a 0 i-+ - 0,3 + (111.7)
1. • a

Substituting Equation (111.7) into Equation (111.6) gives:



The transpose of Equation (1II.8) is-

Ac • (l - a) A (M1.9)
-1

_ The average of corresponding terms in the ACT and A. matrices eliminates
the assumed error, since

l/2[ACT- +Ac 1A~. + i a] A
S]./2 -I~~ + A A C

(xxix. o)

Other types of errors are introduced through numerical integration which are
not necessarily eliminated by this averaging process. Therefore, this con-
straint is not intended to Improve the accuracy of the direction cosines but
rather is used to prevent divergence and maintain an orthogonal transformation.

The computer equations required to mechanize the constraint are presented
below. The determl-.nnt. of Ac is:

S= 11. mU n 3 c + I-- mlen "•" +'•12 m3c "Ie

- 13c &2 c ul1 - 2c mle n3c - lie w3c u2c

The inverse or the Lranspose oif Ac is

(m2C n3c -n~ c m3e) (n 2 c 13c 12c n3c) (12c m3c -2 13c

AcT•I = i (nlc U3e- ulle u3c) (11 1ie nie 13c) (Elc .13 • 1c m3c]

(ilc n2, - nlc R%) (nic 12c - n2c 11) (1ic 112c M ta cc)

-:1,
For convenience let ACT be w-i :.ten as

A4= i 2 U(11.13)A ' uI •'(n.

3 3-1

Then 1/2(AcT + 4), the matrix of direction cosines with the error, a,
attenuated, may be written as



(I +i+) (1ý + ...
- II I , " "

A1/2 I (13c .3.3) (m3c + M3 tn3c + )R;:

Equations (III.11) through (11I.14) are required to employ the orthogonality
constraint. The matrix of Equation (111.14) contains the corrected direction
cosines relating body and inertial 1oo0rdinates.

Evaluation of the Constraint - To evaluate the effectiveness of the con-
straint, Equation (111.2) was solved simultaneouly using Modified Muler inte-
gration with a time step of 0.01 second. The body angular rates, p, q, and r,Iwere selected so that the body coordinates were rotated at one revolution per
second about an axis fixed with respect to inertial coordinates. Therefore,
at the end of each second, the direction cosine matrix relating the two coor-
dinate systems is a unit matrix. 'The accuracy of the individual direction
cosines may easily be determined at the: end of each second.

The criterion used to evaluate the orthogonality of the direction cosines
is to multiply the computed matrix of direction cosines by its transpose. For
an orthogonRl transformation, a unit matrix is the correct result of thismultiplication. The elements of the product of the computed matrix vIth its

transpose is compared with corrcsondring cecuents of a unit matrix. This
* nfjpa,'iDoi _1 I sed as a criterion for evaluating the orthogonality of the
computed matrix of dlrecblo cosines with Its tranzsose produced a matrix
with itumb-vs ulung the main diagonal that dJ.ffod fror unity by Xbouz 3 x .U
The off-al.agon!1. numhes whioh should have been zero were about 6 x 10-6. After
the same number of revolutions with the constraint developed above employed,
the produuL of the computed uatrix with its trauspose produced numbers aJ.ong
the main diagonal which differed from unity by 2 x 10- . TUhe of)-diagonal
numbers wr-.re about 8 x 10-10. From these results we may conclude that the
orthogounilLy o" lhe ,ransformation is markedly improved by using the constraint
*ith Modified Euler integration.
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" METHOD OF INOLUDTNG A 1ROTI MOEI8LA0TIITY

Aerothertwelastic Effects - The effect of static aerotherroelasticity on
N the aerodynamic coefficients will be accounted for in some of the aerodynamic

subprograms. This effect results from the deflection and distortion of the
heated structure under loading. Considerable theoretical work has been devoted
Lu the problem of static aeroelasticity. Typical examples are References (Four-
1), (Four-2), and (Four-3). The magnitude of effects is dependent upon the amountof deflection of the 3tructure which is., in turn, a function of the structural
rigidity.

A development of the static aerothermoelastic terms to be included in the
program follows. Let F represent any one of the orthogonal cumponents of aero-
dynamic force or moment acting on a rigid airframe at a given flight condition,
and let F' represent the force or moment acting on the elastic airframe under the
same conditions. Then:

i =,"I F +1)

where Mi represents the innremental force (or moment) contribution of the i-th
member' vf the airframe due to its structural deflection, 51, under load. Assuming
linear deflection-load characteri ntica,

.wvi = ---i o., (IV.2)

The i-th member will deflect In a given plane due to both inertia loads, n, and
_i.r-lynsmlc loads, N, on the member in that plenc so that

= n+ b .. (Iv.3)

and since

X! dii §j+!a (IV.4)
d~b 1

we have

L61 n +2
. - dn __ (IV.5)
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i• Substituting Equation- (Iv.2) und (IV-5) into Eq.uation (V ),aw-.# np ' tha

A. = Ni/WT, We obtainI
Ft F~ +~ (Iv.76)E

"•i- drai

or

r Ni dbi

To solve for N' let F' N', F - N. Then

W1 N+N' d 4 a n l + "I WTi Ai (Iv.9)

anct

r ~ ~ 66 d 8j Ij
Nt/ ___ dNd- b-(V-9

It is uormally more conveniant to work with coefficients, rather then forces or
moments, therefore

r dCy~ qxS (IV. 10)
di' o_ •x~ (rv.uo)ab i d~i

d5i d(Eu

The effect of a change ii VUe modulus of elastL.1ty from tize re'ereu~ -•,ierature

value,. Eo, can be introduced. i:L the following wavy

) E(
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I Tntroducing these expressions into Equation (DI!9), we obtain

[,- (._*S) bi\ (,• ,,

An analysis of the structure under the influence of various temp~erature distri-
butions will, yield the parameters necessary to evaluate the above equation for a
constant dynnmic pressure. Repeated applications, with varying dynamic pressure,
will result i n the functional dependence of the (aeroelastic/rigid) load ratio upon

the temperature dit'tribution and. dynamic pressure. A complete analysis woulid recquire
that the effect of each of the. independent variables considered in the determination
of the aerodynamic coefficients, (Cg, • 5p ba, r MN, Ts, be evaluated. Ilowever,

the scope of such an analysis is beyond tSaat Ilesired for this program. A program
which could accompili31 th•is analys~is would require w,,'e wacehi.'e spaco thon that
required by the SDF computer progiam.

It t~herefore becuweu necessary to make certain simplifying astsumption8 in
the above analysis. S3inee the primsary object of the SDF computer pi~ogram is to

evaluate perfo .,•ce and not highly specialized design problems, these assiptiona
ir'. justifiable. This philosophy is consintut wilth that followed in the aero-

dynami~c ht!atinlg program, where the calculations are limited to 2 or 3 monitoring
temperatures. Tlk. determination of the tc~mperature distribution throughout the
structure is beyond the scope of the program.

In view of this, let ..1! make the following assumption,

It i• now possible to group some of the termIs in E~quationi (IV.14) into eonatan5•
(for a particular Mach number), and the equation becomes

NSIN = \ 2.*_ (rv.16)
)E E ".
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Equation (.IV.16) may be writ-ten in -the following vay,.

N'N:1+ (IV.-2O)

Th~e denominator may be expanded by ....l, binomial theorem to give

Y ... = .Y + y+2 + y3 + I.1

which is approximately given by

+ -Y

whery ib ;Mull rolative to unity. Then

0I + X) U •. ,0) ( -

or, agnin r'etaining only firrst-order terms in x and yj

N'IN = .L + X + -Y (iv.-a4)

- - , (xv.25)
M " l -• ." - .L . -

If this equqtiuon i6 yso expanded in t bie nomial. series, and only the first-order

termp -eta' ned. .•. o,+-rp,,
i5 K, (+ + K ) (wv.20)

"" =(-- � K3 (1 + K q-!.. ) (IV.27)

1- y

0,.tituting Equations (IV.26) &itd (.V.2t) into Eqiation (IV,24)

19o



or

N'/N=-+( •K.+ K 3 )q+( K 1K 2 + + K3+a)

* •-' The term (q*/E) may be represented in the following way

E EO E (IJ.V0)

* Making this substitution into Equation (IV.29), we obtain

N'/N = I + ( ZKl+ E K) 2 ( -_IK2 + -K3r,) (V31

Typical examples of the (EoJE) ratio for vs&rtous materials are presented as a
function tC temperature ia Figue (i). ifl this n"bprograx en (Eo/E) ratio wifl!
be input a- ea function of a reference structural temperature. The raLio is to be
representative of the entire structure, as indicated in Equiation (IV.15). The
reference structural temperature variation will be determined in the aerodynamic
heating subprogram. Utilizing the interpolated (Eo/E) ratio, Equation (TV.31) may
be expreosed as

2where-

A = ( ZK,. 2 + EK3 )/E (Iv.33)

Equation (tv.h) wil1. be evaluated for th:. following fo)vce and moment dertvalives:
CAa, CAbq, CN, CNbqP, C!Y ? Cybr,' , i ClpJ C ma' cmq, Cn%, and Cn~ r'

A ty.ipical example is
cA CA [1 + AlI* + (IV.35)

Figure (2) gives an indication of the dynamic pressuc.- Jfect on the elastic
control derivat3ive, CM§ , at various Mach numbers. The points denoted by symbols
have been computed by tM "exact" method, which accounts for the load and tempera-
ture distribution through an actual structure. The solid line is a second-degree
curve fit of these points which demonstrates very acceptable accuracy. The first-
order approximation to tne second-order curve fit and a straight-line least-squares
curve fit are also shown in this figure. In certain caoes the straight-line curve
fit gives small incremental errors, but large percentage errors because of the
mawnitude of the derivative. For this reason the second order tern will be retalned
in the above equations. With these assumptions and limitatious, the aorotmermo-
elastic effects are introduced as indicated by the equation flow dilajram. It will
be required to input one curve of (Eo/E) versus tempersture, and tventy-four cuxwea
consisting of an indiW,,dual curve versus Macn number nuz. eacw- oftthi A vale.
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S~The "trwisfer functions representing control-aytem corrective networks. !
•.filters, sej-.,ou, etc., a re ugually u.jvclt•'av as• f•tneou of" the eowie Zrqeuy
• sa. A transf'er function may be illustrated in block-diagram Noma:,

•,,(9) - eo(s)

Swhieh Is interpreted. an;

I * APP~(V.1)

The above notation indieabes that the frequency speetrutm of the input signal
ei(s) is modified by the transfer function f(s) to describe the out-put, u(u).
Since computations in this digital program are performed in the tiae; domai, It
will be necessary to determine the transient response by solving thc differential
equations repre ntin er entinent transfer functione.

Transfer functions containing only poles are easily converted to differen-

tial equation form by recailing tht multiplication by a in the frequency doumlrA
(:orr+esponds to differentiation in the time domair. when ini,.tial. conditions are
zero. (Tco Transfer Function 1, Table V-1). However, if zeros are present in
a trlnsfer function, a solaution for t.he output will involve a derwvatlve of the

input signal. This derivative Would have to be evaluat,-t by a programmed differeýn-
tiation operation. This undesirable operation may be avolded by fix-Bi- expanding
the transfer function into partial fractins. Each p-rtial fraction represents

aj a simple first-order OJfferentilal equation; the ouitput of a given transfer func-
tion may be determined by summing -the solutions of each of the first-order equatir.ýn,
arccording to tlba partial tfraction exitn-r:ion0 'The differential equations reproerjering
a tran~sfer function with two real zeros and two real poles will be developed as F~m
example.

(i381 -F01

The partial fraction expauslu ias ottaened by usine the procedures outlined
in Reference (Five-d).

eiuii pro l arD (Vp3)

o= 3(a' ) = T2 4-'C 3

willbe ecesaryto dter ine th5 T4nieA respons bysovigths dfernta
wequtosrpeetirtepriettrefrfnto~

Transfer~~~~~ fuc-n cotinn ol olsar Tai )oveted, to diffren
p ~ ~ ~ ~ 1 Ttial eiutoTomb eaUn htmlilc tio b inThefeunydmi

~m'espn3 to3)eetaini t~tm oarwe i~i1cniin r

zeo. (Sc rasfr untin , abe -i. ioevrifzeosar pe9nti
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* and the term •¶ 2/¶3!4 U hl vth ,ue of the transfer metlion. ab a vpproaoches

V. The output of this transfer function may be w~'tten a' -".

eo(W - ~2 ej(a) + C y2(s) + D y3(s) (V,5)

where y2 and Y3 are defined as follows:

E y2 s) -*~ (.6)
-~ r38 +1

YP +1

The dIffereatial equations represented by Equation (V.6) are:

g3 j 2(t) + Y2 (t) = ei

* .r• 1 3 (t) + Y3(t) -e (V.e)

The output of the transfer function is given bX aubstitutIng the values
of y2(t) aud y3 (t) into the following time-domnain equation:

e0 (t) ei(t) + C y2(t) + D y (W) (V.8)

A reprt-montative group of transfer functions and Lho cor-..ponddi;ag time
domain equatiuns have been developed in a similar fi'hlon and are tabulated in
Tablt: V--,J.
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A SBQ~-rDM 85lMUL-OWN PF.-ED e
OF AHROEMSATIOI!Y 011- AUTQXQ ~IVO

A method of approximuting the effect of a .rool daticity on the dynamic behavor
or an autopi]lot in the SUF computer program wvli be developsed ii tV4is appen.i•- e
computations required for the simplified aeroelastic, tiudy-are prpzented -in -Qrdt•-

.. that they may be incorporated into a partimular aut6pilot SUbprogram if-ub a study
is desired. Suuh an aeroelastic modification weas indieated in the typcal sutopilotI 'formu:latiun. However, these corrections have not been included in the ccmputr

h pp.cogra'n assembled to demonstrate the operation of that autopilot.

The purpose of this analysiv is to generate an expression ror the aeroelAsttc,
vibrations that would be sensed by body-mounted rate gyros. The equationu are
developed with the following assumptions.

1. The vibrations are ec.uited unily by control forces.

2. Only longi.tudinal tuid lateral vibrations are considered.

3. The amplitude of a given point may be represented by a second-
order differential equation.

4. The aeroelastic angular rates at a given point may be directly
superimjposed upon the rigid-body angular rates.

'TLhe inzput data required for LU-s study are:

1. The normalized lateral. and longitudinai body-bending mode shapes
for the first, second, and third modes.

2. The natural frequency and bLructural damping ratio of each mode.

3. Gi,•reralizel forc'e inpits, Zi and Yi, for the i-th mode in the
x-z add x.-y planes ruspcct.vely.

The complex frequency expression for the instantaneous deflection of the point
to which the normalized body bending curve is referenced may be iritten as:

zl = Zl(vI. l)

Y 2 + g2i W"Y + Wzi

Yi
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where: ýzi ýYi Strocturia (.J'ping ratio x-z and x-y planes respectively.

Wz , Yi Natural frequency, x-z and x-y planes respectively.

zi, Y! Displacement of point to which the mode shape ii normalized.
"\x-z and x-y planes respectively.

The deflections z , and yj are obtained by solving the differential ec,&ti;cr

corresponding to (VI. lJ'nd (VI.2).

The derivation which ±bllows is based on the analyses of Reference (Six-l).

Two body-mounted rate gyros have been arbitraj-'ly lozat•d on the typical normalizec,
body bending mode shapes of Figure (1). The obj ect!: e of thQ d6. -ivaton are to

determine an expression for the aeroelastic body angular rates at the rate gyro

,bcy station. This will be accomplished by first determining the sl½ve of the
normalized bending curve at the rate gyro station. The actual slope at any instaut
is then obtained by the normalizing factors zi and y.-. The rate of change of the

actual slope is approximately equal ';o the aeroelastic body angular rate at the
rate-gyro station.

Y

yign

, I Ni Normalized SlopeS~ith Mode

u I z

~4-)

S--Normalized Sio.t,

Figure I Norma••,,c. b '-...L.,,.,.zc.. . Lf,
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and. yig1i i-z:~__
in t ~ sna xy ~ rpe~iv± ~.The instantaneous cK t!

bod-ý ions. may be d~etermined by rw, J iplyiflg the normalized d.~~ *.:-.
deý.-."cý i::n ofO the reference point as :o~mputed in Equations(wi .

Zig ZigZj '3)

Yiig

x
y

The ;ctuaj. sjoige z.t a~iy I~ý t rtýCied by co~foin-!A V. IquVin;,\~
NVI 6) r(VIL 10 with (V.I.y \

TI .-te of (11Lu.nge if tho- actual- \\kstaritaneous s 1'0j)eE is:

71N'ý (VI.9)

~ . . (VI. 10)

For -,al rnMpiiudes of oscillatior, -Ile slope of t~he tangent tz approximately
ec~ai to t ~ tan3-z~nt makes wtL .1 i-reerenee x-axi~s. irjrýt

aŽo~zi 'g.ila-- >ýody -':tes at, the -' -Y"' ~tatiorli, are.:

rAp, (VI.1i

.L

the glrzos arc netrgiI. 1he\Exoela jd- r -~-t ,

i=3

rg r + >2 Nj 'Zkzf

ph cuyt ational fiv±w seqluence f or the aeroe1-D, . ztudY is shown in Fi ýýIk:.
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